Sparse Bayesian Learning Using Generalized Double Pareto Prior for DOA Estimation

被引:38
|
作者
Wang, Qisen [1 ,2 ]
Yu, Hua [1 ,2 ]
Li, Jie [3 ]
Ji, Fei [3 ]
Chen, Fangjiong [3 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Peoples R China
[2] Minist Nat Resources, Key Lab Marine Environm Survey Technol & Applicat, Guangzhou 510300, Peoples R China
[3] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Economic indicators; Estimation; Direction-of-arrival estimation; Bayes methods; Convergence; Signal processing algorithms; Sensor arrays; Direction of arrival; generalized double Pareto prior; complex signals; sparse Bayesian learning; OF-ARRIVAL ESTIMATION; SIGNAL RECONSTRUCTION;
D O I
10.1109/LSP.2021.3104503
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we propose a novel sparse Bayesian learning (SBL) algorithm using Generalized Double Pareto (GDP) prior to enhance the performance of direction of arrival (DOA) estimation for complex signals. Firstly, a novel hierarchical prior model is formulated for complex signals so that the marginal distribution of the complex signal is the GDP distribution, which promotes the sparsity more significantly than conventional priors used in SBL. Secondly, a novel fixed-point update rule of the hyperparameters is derived to speed up the convergence of the proposed SBL. Finally, a refined DOA searching method is also derived to tackle the grid-mismatch problem. Simulation results demonstrate the improved accuracy and efficiency of the proposed algorithm in low SNR and limited snapshots scenarios compared with other SBL-based DOA estimation methods.
引用
收藏
页码:1744 / 1748
页数:5
相关论文
共 50 条
  • [1] DOA Estimation Using Block Variational Sparse Bayesian Learning
    HUANG Qinghua
    ZHANG Guangfei
    FANG Yong
    Chinese Journal of Electronics, 2017, 26 (04) : 768 - 772
  • [2] DOA Estimation Using Block Variational Sparse Bayesian Learning
    Huang Qinghua
    Zhang Guangfei
    Fang Yong
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (04) : 768 - 772
  • [3] DOA M-ESTIMATION USING SPARSE BAYESIAN LEARNING
    Mecklenbraeuker, Christoph F.
    Gerstoft, Peter
    Ollila, Esa
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4933 - 4937
  • [4] A Generalized Sparse Bayesian Learning Algorithm for 1-bit DOA Estimation
    Meng, Xiangming
    Zhu, Jiang
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (07) : 1414 - 1417
  • [5] Cramer-Rao Bounds for DoA Estimation of Sparse Bayesian Learning with the Laplace Prior
    Bai, Hua
    Duarte, Marco F. F.
    Janaswamy, Ramakrishna
    SENSORS, 2023, 23 (01)
  • [6] Sparse Bayesian Learning with Jeffreys' Noninformative Prior for Off-Grid DOA Estimation
    Karimi, Mahmood
    Zare, Mohammadreza
    Derakhtian, Mostafa
    SIGNAL PROCESSING, 2025, 230
  • [7] Acoustic DOA estimation using space alternating sparse Bayesian learning
    Bai, Zonglong
    Shi, Liming
    Jensen, Jesper Rindom
    Sun, Jinwei
    Christensen, Mads Graesboll
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2021, 2021 (01)
  • [8] Acoustic DOA estimation using space alternating sparse Bayesian learning
    Zonglong Bai
    Liming Shi
    Jesper Rindom Jensen
    Jinwei Sun
    Mads Græsbøll Christensen
    EURASIP Journal on Audio, Speech, and Music Processing, 2021
  • [9] DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning
    Gerstoft, Peter
    Mecklenhrauker, Christoph E.
    Nannuru, Santosh
    Leus, Geert
    2020 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (2020 ACES-MONTEREY), 2020,
  • [10] Sparse Bayesian Learning for DOA Estimation with Mutual Coupling
    Dai, Jisheng
    Hu, Nan
    Xu, Weichao
    Chang, Chunqi
    SENSORS, 2015, 15 (10) : 26267 - 26280