DOA M-ESTIMATION USING SPARSE BAYESIAN LEARNING

被引:7
|
作者
Mecklenbraeuker, Christoph F. [1 ]
Gerstoft, Peter [2 ]
Ollila, Esa [3 ]
机构
[1] TU Wien, Inst Telecommun, Vienna, Austria
[2] Univ Calif San Diego, NoiseLab, San Diego, CA USA
[3] Aalto Univ, Dept Signal Proc & Acoust, Aalto, Finland
关键词
DOA estimation; robust statistics; outliers; sparsity; Bayesian learning; BLIND DECONVOLUTION; LOCALIZATION;
D O I
10.1109/ICASSP43922.2022.9746740
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recent investigations indicate that Sparse Bayesian Learning (SBL) is lacking in robustness. We derive a robust and sparse Direction of Arrival (DOA) estimation framework based on the assumption that the array data has a centered (zero-mean) complex elliptically symmetric (ES) distribution with finite second-order moments. In the derivation, the loss function can be quite general. We consider three specific choices: the ML-loss for the circularly symmetric complex Gaussian distribution, the ML-loss for the complex multivariate t-distribution (MVT) with nu degrees of freedom, and the loss for Huber's M-estimator. For Gaussian loss, the method reduces to the classic SBL method. The root mean square DOA performance of the derived estimators is discussed for Gaussian, MVT, and epsilon-contaminated noise. The robust SBL estimators perform well for all cases and nearly identical with classical SBL for Gaussian noise.
引用
收藏
页码:4933 / 4937
页数:5
相关论文
共 50 条
  • [1] Robust and sparse M-estimation of DOA
    Mecklenbraeuker, Christoph F.
    Gerstoft, Peter
    Ollila, Esa
    Park, Yongsung
    SIGNAL PROCESSING, 2024, 220
  • [2] DOA Estimation Using Block Variational Sparse Bayesian Learning
    HUANG Qinghua
    ZHANG Guangfei
    FANG Yong
    Chinese Journal of Electronics, 2017, 26 (04) : 768 - 772
  • [3] DOA Estimation Using Block Variational Sparse Bayesian Learning
    Huang Qinghua
    Zhang Guangfei
    Fang Yong
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (04) : 768 - 772
  • [4] Acoustic DOA estimation using space alternating sparse Bayesian learning
    Bai, Zonglong
    Shi, Liming
    Jensen, Jesper Rindom
    Sun, Jinwei
    Christensen, Mads Graesboll
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2021, 2021 (01)
  • [5] Acoustic DOA estimation using space alternating sparse Bayesian learning
    Zonglong Bai
    Liming Shi
    Jesper Rindom Jensen
    Jinwei Sun
    Mads Græsbøll Christensen
    EURASIP Journal on Audio, Speech, and Music Processing, 2021
  • [6] DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning
    Gerstoft, Peter
    Mecklenhrauker, Christoph E.
    Nannuru, Santosh
    Leus, Geert
    2020 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (2020 ACES-MONTEREY), 2020,
  • [7] Sparse Bayesian Learning for DOA Estimation with Mutual Coupling
    Dai, Jisheng
    Hu, Nan
    Xu, Weichao
    Chang, Chunqi
    SENSORS, 2015, 15 (10) : 26267 - 26280
  • [8] DOA Estimation in Heteroscedastic Noise with sparse Bayesian Learning
    Gerstoft, Peter
    Mecklenbraeuker, Christoph F.
    Nannuru, Santosh
    Leus, Geert
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (11): : 1439 - 1440
  • [9] SPARSE BAYESIAN LEARNING FOR DOA ESTIMATION OF CORRELATED SOURCES
    Mecklenbraeuker, Christoph F.
    Gerstoft, Peter
    Leus, Geert
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 533 - 537
  • [10] DOA ESTIMATION IN HETEROSCEDASTIC NOISE WITH SPARSE BAYESIAN LEARNING
    Gerstoft, Peter
    Nannuru, Santosh
    Mecklenbraeuker, Christoph F.
    Leus, Geert
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 3459 - 3463