Hardy's uncertainty principle, convexity and Schrodinger evolutions

被引:1
|
作者
Escauriaza, L. [1 ]
Kenig, C. E. [2 ]
Ponce, G. [3 ]
Vega, L. [1 ]
机构
[1] Univ Basque Country, EHU, Dept Matemat, E-48080 Bilbao, Spain
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Schrodinger evolutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrodinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy's version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
引用
收藏
页码:883 / 907
页数:25
相关论文
共 50 条
  • [31] Quantum States and Hardy’s Formulation of the Uncertainty Principle: a Symplectic Approach
    Maurice de Gosson
    Franz Luef
    Letters in Mathematical Physics, 2007, 80 : 69 - 82
  • [32] Hardy's uncertainty principle for Gabor transform on compact extensions of Rn
    Smaoui, Kais
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (03): : 581 - 600
  • [33] UNCERTAINTY PRINCIPLE FOR RATIONAL FUNCTIONS IN HARDY SPACES
    Xiong, Dan
    Chai, Li
    Zhang, Jingxin
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4364 - 4368
  • [34] The Hardy–Rellich Inequality and Uncertainty Principle on the Sphere
    Feng Dai
    Yuan Xu
    Constructive Approximation, 2014, 40 : 141 - 171
  • [35] Heat kernels and Hardy's uncertainty principle on H-type groups
    Fuhu, Zhu
    Qiaohua, Yang
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 171 - 178
  • [36] Feynman-path analysis of Hardy's paradox:: Measurements and the uncertainty principle
    Sokolovsk, D.
    Gimenez, I. Puerto
    Mayato, R. Sala
    PHYSICS LETTERS A, 2008, 372 (21) : 3784 - 3791
  • [37] HEAT KERNELS AND HARDY’S UNCERTAINTY PRINCIPLE ON H-TYPE GROUPS
    朱赋鎏
    杨乔华
    Acta Mathematica Scientia, 2008, (01) : 171 - 178
  • [38] Hardy's uncertainty principle and unique continuation property for stochastic heat equations
    Fernandez-Bertolin, Aingeru
    Zhong, Jie
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26 (09)
  • [39] SCHRODINGER UNCERTAINTY RELATION AND CONVEXITY FOR THE MONOTONE PAIR SKEW INFORMATION
    Ko, Chul Ki
    Yo, Hyun Jae
    TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (01) : 107 - 117
  • [40] UNCERTAINTY PRINCIPLE FOR DISCRETE SCHRODINGER EVOLUTION ON GRAPHS
    Alvarez-Romero, Isaac
    MATHEMATICA SCANDINAVICA, 2018, 123 (01) : 51 - 71