Hardy's uncertainty principle, convexity and Schrodinger evolutions

被引:1
|
作者
Escauriaza, L. [1 ]
Kenig, C. E. [2 ]
Ponce, G. [3 ]
Vega, L. [1 ]
机构
[1] Univ Basque Country, EHU, Dept Matemat, E-48080 Bilbao, Spain
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Schrodinger evolutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrodinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy's version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
引用
收藏
页码:883 / 907
页数:25
相关论文
共 50 条
  • [21] On the Prolate Spheroidal Wave Functions and Hardy’s Uncertainty Principle
    Elmar Pauwels
    Maurice de Gosson
    Journal of Fourier Analysis and Applications, 2014, 20 : 566 - 576
  • [22] Lp versions of Hardy's uncertainty principle on hyperbolic spaces
    Andersen, NB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) : 2797 - 2807
  • [23] On the Prolate Spheroidal Wave Functions and Hardy's Uncertainty Principle
    Pauwels, Elmar
    de Gosson, Maurice
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (03) : 566 - 576
  • [24] On Hardy’s Uncertainty Principle for Solvable Locally Compact Groups
    Ali Baklouti
    Eberhard Kaniuth
    Journal of Fourier Analysis and Applications, 2010, 16 : 129 - 147
  • [25] A generalizaton of Hardy's uncertainty principle on compact extensions of Rn
    Azaouzi, Salma
    Baklouti, Ali
    Elloumi, Mounir
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) : 723 - 737
  • [26] Robertson-Schrodinger formulation of Ozawa's uncertainty principle
    Bastos, Catarina
    Bernardini, Alex E.
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [27] A note on the general solution of Schrodinger's equation and the uncertainty principle
    Hill, EL
    PHYSICAL REVIEW, 1931, 38 (12): : 2115 - 2121
  • [28] An uncertainty principle like Hardy's theorem for nilpotent Lie groups
    Kumar, A
    Bhatta, CR
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 77 : 47 - 53
  • [29] Vector-valued distributions and Hardy's uncertainty principle for operators
    Cowling, M. G.
    Demange, B.
    Sundari, M.
    REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) : 133 - 146
  • [30] Quantum states and Hardy's formulation of the uncertainty principle: A symplectic approach
    De Gosson, Maurice
    Luef, Franz
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 80 (01) : 69 - 82