Hardy's uncertainty principle, convexity and Schrodinger evolutions

被引:1
|
作者
Escauriaza, L. [1 ]
Kenig, C. E. [2 ]
Ponce, G. [3 ]
Vega, L. [1 ]
机构
[1] Univ Basque Country, EHU, Dept Matemat, E-48080 Bilbao, Spain
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Schrodinger evolutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrodinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy's version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
引用
收藏
页码:883 / 907
页数:25
相关论文
共 50 条
  • [1] Hardy Uncertainty Principle, Convexity and Parabolic Evolutions
    L. Escauriaza
    C. E. Kenig
    G. Ponce
    L. Vega
    Communications in Mathematical Physics, 2016, 346 : 667 - 678
  • [2] Hardy Uncertainty Principle, Convexity and Parabolic Evolutions
    Escauriaza, L.
    Kenig, C. E.
    Ponce, G.
    Vega, L.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) : 667 - 678
  • [3] THE SHARP HARDY UNCERTAINTY PRINCIPLE FOR SCHRODINGER EVOLUTIONS
    Escauriaza, Luis
    Kenig, Carlos E.
    Ponce, Gustavo
    Vega, Luis
    DUKE MATHEMATICAL JOURNAL, 2010, 155 (01) : 163 - 187
  • [4] SHARP HARDY UNCERTAINTY PRINCIPLE AND GAUSSIAN PROFILES OF COVARIANT SCHRODINGER EVOLUTIONS
    Cassano, B.
    Fanelli, L.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (03) : 2213 - 2233
  • [5] A discrete Hardy’s uncertainty principle and discrete evolutions
    Aingeru Fernández-Bertolin
    Journal d'Analyse Mathématique, 2019, 137 : 507 - 528
  • [6] A discrete Hardy's uncertainty principle and discrete evolutions
    Fernandez-Bertolin, Aingeru
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (02): : 507 - 528
  • [7] Uncertainty principle of Morgan type and Schrodinger evolutions
    Escauriaza, L.
    Kenig, C. E.
    Ponce, G.
    Vega, L.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 : 187 - 207
  • [8] Notes on Hardy?s uncertainty principle for the Wigner distribution and Schr?dinger evolutions
    Knutsen, Helge
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (01)
  • [9] Convexity properties of discrete Schrodinger evolutions
    Fernandez-Bertolin, Aingeru
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 257 - 278
  • [10] Hardy uncertainty principle and unique continuation properties of covariant Schrodinger flows
    Barcelo, J. A.
    Fanelli, L.
    Gutierrez, S.
    Ruiz, A.
    Vilela, M. C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (10) : 2386 - 2415