Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial

被引:14
|
作者
Nosedal-Sanchez, Alvaro [1 ]
Storlie, Curtis B. [2 ]
Lee, Thomas C. M. [3 ]
Christensen, Ronald [4 ]
机构
[1] Indiana Univ Penn, Dept Math, Indiana, PA 15705 USA
[2] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA
[3] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[4] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
来源
AMERICAN STATISTICIAN | 2012年 / 66卷 / 01期
基金
美国国家科学基金会;
关键词
Projection principle; Regularization; Representation Theorem; Ridge Regression; Smoothing Splines; SELECTION;
D O I
10.1080/00031305.2012.678196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized regression procedures have become very popular ways to estimate complicated functions. The smoothing spline, for example, is the solution of a minimization problem in a functional space. If such a minimization problem is posed on a reproducing kernel Hilbert space (RKHS), the solution is guaranteed to exist, is unique, and has a very simple form. There are excellent books and articles about RKHS and their applications in statistics; however, this existing literature is very dense. This article provides a friendly reference for a reader approaching this subject for the first time. It begins with a simple problem, a system of linear equations, and then gives an intuitive motivation for reproducing kernels. Armed with the intuition gained from our first examples, we take the reader from vector spaces to Banach spaces and to RKHS. Finally, we present some statistical estimation problems that can be solved using the mathematical machinery discussed. After reading this tutorial, the reader will be ready to study more advanced texts and articles about the subject, such as those by Wahba or Gu. Online supplements are available for this article.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [31] Uncertainty Principle in Reproducing Kernel Hilbert Spaces
    Sala, Jamaluddin S.
    Canton, Recson G.
    Lintasan, Abdurajan B.
    Rasid, Regimar A.
    Artes Jr, Rosalio G.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1273 - 1279
  • [32] Composition in Reproducing Kernel Hilbert Spaces a Rebours
    Szafraniec, Franciszek Hugon
    OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 365 - 384
  • [33] OPERATOR INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Yamanci, Ulas
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 204 - 211
  • [34] Metamorphosis of images in reproducing kernel Hilbert spaces
    Casey L. Richardson
    Laurent Younes
    Advances in Computational Mathematics, 2016, 42 : 573 - 603
  • [35] Symmetric Operators and Reproducing Kernel Hilbert Spaces
    Martin, R. T. W.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2010, 4 (04) : 845 - 880
  • [36] Factorizations of Kernels and Reproducing Kernel Hilbert Spaces
    Rani Kumari
    Jaydeb Sarkar
    Srijan Sarkar
    Dan Timotin
    Integral Equations and Operator Theory, 2017, 87 : 225 - 244
  • [37] Factorizations of Kernels and Reproducing Kernel Hilbert Spaces
    Kumari, Rani
    Sarkar, Jaydeb
    Sarkar, Srijan
    Timotin, Dan
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 87 (02) : 225 - 244
  • [38] The Feichtinger Conjecture and Reproducing Kernel Hilbert Spaces
    Lata, Sneh
    Paulsen, Vern
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (04) : 1303 - 1317
  • [39] EXPLICIT RECURSIVITY INTO REPRODUCING KERNEL HILBERT SPACES
    Tuia, Devis
    Camps-Valls, Gustavo
    Martinez-Ramon, Manel
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4148 - 4151
  • [40] Linear dynamics in reproducing kernel Hilbert spaces
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 159