Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial

被引:14
|
作者
Nosedal-Sanchez, Alvaro [1 ]
Storlie, Curtis B. [2 ]
Lee, Thomas C. M. [3 ]
Christensen, Ronald [4 ]
机构
[1] Indiana Univ Penn, Dept Math, Indiana, PA 15705 USA
[2] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA
[3] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[4] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
来源
AMERICAN STATISTICIAN | 2012年 / 66卷 / 01期
基金
美国国家科学基金会;
关键词
Projection principle; Regularization; Representation Theorem; Ridge Regression; Smoothing Splines; SELECTION;
D O I
10.1080/00031305.2012.678196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized regression procedures have become very popular ways to estimate complicated functions. The smoothing spline, for example, is the solution of a minimization problem in a functional space. If such a minimization problem is posed on a reproducing kernel Hilbert space (RKHS), the solution is guaranteed to exist, is unique, and has a very simple form. There are excellent books and articles about RKHS and their applications in statistics; however, this existing literature is very dense. This article provides a friendly reference for a reader approaching this subject for the first time. It begins with a simple problem, a system of linear equations, and then gives an intuitive motivation for reproducing kernels. Armed with the intuition gained from our first examples, we take the reader from vector spaces to Banach spaces and to RKHS. Finally, we present some statistical estimation problems that can be solved using the mathematical machinery discussed. After reading this tutorial, the reader will be ready to study more advanced texts and articles about the subject, such as those by Wahba or Gu. Online supplements are available for this article.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [21] Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework
    Sun, Xiaoxiao
    Du, Pang
    Wang, Xiao
    Ma, Ping
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1601 - 1611
  • [22] A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces
    Hongzhi Tong
    Michael Ng
    Annals of Applied Mathematics, 2022, 38 (03) : 280 - 295
  • [23] Functional regression with dependent error and missing observation in reproducing kernel Hilbert spaces
    Yan-Ping Hu
    Han-Ying Liang
    Journal of the Korean Statistical Society, 2023, 52 : 736 - 764
  • [24] Functional regression with dependent error and missing observation in reproducing kernel Hilbert spaces
    Hu, Yan-Ping
    Liang, Han-Ying
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (03) : 736 - 764
  • [25] Optimal prediction of quantile functional linear regression in reproducing kernel Hilbert spaces
    Li, Rui
    Lu, Wenqi
    Zhu, Zhongyi
    Lian, Heng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 211 : 162 - 170
  • [26] Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition
    Yuzhu Tian
    Hongmei Lin
    Heng Lian
    Zengyan Fan
    Metrika, 2021, 84 : 429 - 442
  • [27] Faster convergence rate for functional linear regression in reproducing kernel Hilbert spaces
    Zhang, Fode
    Zhang, Weiping
    Li, Rui
    Lian, Heng
    STATISTICS, 2020, 54 (01) : 167 - 181
  • [28] Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition
    Tian, Yuzhu
    Lin, Hongmei
    Lian, Heng
    Fan, Zengyan
    METRIKA, 2021, 84 (03) : 429 - 442
  • [29] Reproducing Kernel Hilbert Spaces and fractal interpolation
    Bouboulis, P.
    Mavroforakis, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) : 3425 - 3434
  • [30] Distance Functions for Reproducing Kernel Hilbert Spaces
    Arcozzi, N.
    Rochberg, R.
    Sawyer, E.
    Wick, B. D.
    FUNCTION SPACES IN MODERN ANALYSIS, 2011, 547 : 25 - +