Performance Optimization of CO2 Huff-n-Puff for Multifractured Horizontal Wells in Tight Oil Reservoirs

被引:11
|
作者
Hao, Mingqiang [1 ]
Liao, Songlin [2 ]
Yu, Guangming [3 ]
Lei, Xinhui [3 ]
Tang, Yong [4 ]
机构
[1] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[2] SINOPEC East China Co, Taizhou 225300, Jiangsu, Peoples R China
[3] PetroChina, Res Inst Petr Explorat & Dev, Changqing Oilfield Co, Xian 710018, Shaanxi, Peoples R China
[4] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
RECOVERY; SIMULATION; INJECTION; SHALE; CO2-EOR; GAS;
D O I
10.1155/2020/8840384
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, the sensitivity factors of CO2 huff-n-puff for multifractured horizontal wells (MFHWs) in tight oil reservoirs were investigated through an experimental test and numerical simulation. The pressure-volume-temperature (PVT) experiment and the slim tube experiment are used to understand the interaction mechanism between CO2 and crude oil, and the minimum miscibility pressure (MMP) of the CO2-crude oil system is 17 MPa. The single-well model was firstly established to analyze the sensitivity factors on production performance of MFHWs by using CO2 huff-n-puff. The controlling factors of CO2 huff-n-puff for MFHWs in tight oil reservoirs were divided into three categories (i.e., reservoir parameters, well parameters, and injection-production parameters), and the impact of individual parameter on well performance was discussed in detail. The range of reservoir parameters suitable for CO2 huff-n-puff of MFHWs is obtained. The reservoir permeability is from 0.1 mD to 1 mD, the reservoir thickness changes from 10 m to 30 m, and the reservoir porosity is from 7% to 12%. Based on the reservoir parameters of the target reservoir, the reasonable well and fracture parameters are obtained. The sensitivity intensity was followed by the horizontal well length, fracture conductivity, fracture spacing, and fracture half-length. CO2 injection-production parameters are further optimized, and the sensitivity intensity was followed by the single-cycle cumulative CO2 injection rate, the soaking time, the injection rates, and the production rates. It provides a reference for parameter optimization of CO2 huff-n-puff for MFHWs in tight oil reservoirs.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effect of hydraulic fracture deformation hysteresis on CO2 huff-n-puff performance in shale gas reservoirs
    Yan, Xia
    Liu, Pi-yang
    Huang, Zhao-qin
    Sun, Hai
    Zhang, Kai
    Wang, Jun-feng
    Yao, Jun
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2023, 24 (01): : 37 - 55
  • [42] ANALYSIS OF THE FEATURES OF CO2 HUFF-N-PUFF TECHNOLOGY
    Soromotin, Andrey V.
    Lekomtsev, Alexander V.
    Ilyushin, Pavel Yu.
    BULLETIN OF THE TOMSK POLYTECHNIC UNIVERSITY-GEO ASSETS ENGINEERING, 2022, 333 (12): : 178 - 189
  • [43] The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol
    Shang, Shengxiang
    Dong, Mingzhe
    Gong, Houjian
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [44] Study on CO2 Huff-n-Puff Development Rule of Horizontal Wells in Heavy Oil Reservoir by Taking Liuguanzhuang Oilfield in Dagang as an Example
    Xu, Zhenhua
    Zhou, Lianwu
    Ma, Shuiping
    Qin, Jianxun
    Huang, Xiaodi
    Han, Bo
    Yang, Longqing
    Luo, Yun
    Liu, Pengcheng
    ENERGIES, 2023, 16 (11)
  • [45] Huff-n-Puff Technology for Enhanced Oil Recovery in Shale/Tight Oil Reservoirs: Progress, Gaps, and Perspectives
    Milad, Muhend
    Junin, Radzuan
    Sidek, Akhmal
    Imqam, Abdulmohsin
    Tarhuni, Mohamed
    ENERGY & FUELS, 2021, 35 (21) : 17279 - 17333
  • [46] AN EVALUATION OF CO2 HUFF-N-PUFF TESTS IN TEXAS
    HASKIN, HK
    ALSTON, RB
    JOURNAL OF PETROLEUM TECHNOLOGY, 1989, 41 (02): : 177 - 184
  • [47] A comparative study of CO2 and N2 huff-n-puff EOR performance in shale oil production
    Li, Lei
    Su, Yuliang
    Hao, Yongmao
    Zhan, Shiyuan
    Lv, Yuting
    Zhao, Qingmin
    Wang, Haitao
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 181
  • [48] Experimental Study on the Oil Recovery Performance of CO2 Huff-and-Puff Process in Fractured Tight Oil Reservoirs
    Qian, Kun
    Huang, Yu
    He, Yanfeng
    Dou, Xiangji
    Wu, Xiaojun
    GEOFLUIDS, 2022, 2022
  • [49] The effects of the boundary layer and fracture networks on the water huff-n-puff process of tight oil reservoirs
    Wang, Deqiang
    Cheng, Linsong
    Cao, Renyi
    Jia, Pin
    Fang, Sidong
    Rao, Xiang
    Wu, Yonghui
    Dai, Dan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 176 : 466 - 480
  • [50] Interplay between Rock Permeability and the Performance of Huff-n-Puff CO2 Injection
    Su, Xin
    Yue, Xiang-an
    Moghanloo, Rouzbeh G.
    ACS OMEGA, 2020, 5 (27): : 16575 - 16583