Performance Optimization of CO2 Huff-n-Puff for Multifractured Horizontal Wells in Tight Oil Reservoirs

被引:11
|
作者
Hao, Mingqiang [1 ]
Liao, Songlin [2 ]
Yu, Guangming [3 ]
Lei, Xinhui [3 ]
Tang, Yong [4 ]
机构
[1] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[2] SINOPEC East China Co, Taizhou 225300, Jiangsu, Peoples R China
[3] PetroChina, Res Inst Petr Explorat & Dev, Changqing Oilfield Co, Xian 710018, Shaanxi, Peoples R China
[4] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
RECOVERY; SIMULATION; INJECTION; SHALE; CO2-EOR; GAS;
D O I
10.1155/2020/8840384
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, the sensitivity factors of CO2 huff-n-puff for multifractured horizontal wells (MFHWs) in tight oil reservoirs were investigated through an experimental test and numerical simulation. The pressure-volume-temperature (PVT) experiment and the slim tube experiment are used to understand the interaction mechanism between CO2 and crude oil, and the minimum miscibility pressure (MMP) of the CO2-crude oil system is 17 MPa. The single-well model was firstly established to analyze the sensitivity factors on production performance of MFHWs by using CO2 huff-n-puff. The controlling factors of CO2 huff-n-puff for MFHWs in tight oil reservoirs were divided into three categories (i.e., reservoir parameters, well parameters, and injection-production parameters), and the impact of individual parameter on well performance was discussed in detail. The range of reservoir parameters suitable for CO2 huff-n-puff of MFHWs is obtained. The reservoir permeability is from 0.1 mD to 1 mD, the reservoir thickness changes from 10 m to 30 m, and the reservoir porosity is from 7% to 12%. Based on the reservoir parameters of the target reservoir, the reasonable well and fracture parameters are obtained. The sensitivity intensity was followed by the horizontal well length, fracture conductivity, fracture spacing, and fracture half-length. CO2 injection-production parameters are further optimized, and the sensitivity intensity was followed by the single-cycle cumulative CO2 injection rate, the soaking time, the injection rates, and the production rates. It provides a reference for parameter optimization of CO2 huff-n-puff for MFHWs in tight oil reservoirs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Huff-n-puff gas injection or gas flooding in tight oil reservoirs?
    Tang, Weiyu
    Sheng, James J.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [22] Review on Phase Behavior in Tight Porous Media and Microscopic Flow Mechanism of CO2 Huff-n-Puff in Tight Oil Reservoirs
    Tang, Yong
    Tang, Jiehong
    Liu, Qi
    Wang, Yong
    Zheng, Zigang
    Yuan, Yingjie
    He, Youwei
    GEOFLUIDS, 2020, 2020
  • [23] LABORATORY EVALUATION OF THE CO2 HUFF-N-PUFF PROCESS FOR HEAVY OIL-RESERVOIRS
    SAYEGH, SG
    MAINI, BB
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1984, 23 (03): : 29 - 36
  • [24] CO2 HUFF-N-PUFF REVIVES SHALLOW LIGHT-OIL-DEPLETED RESERVOIRS
    BARDON, C
    CORLAY, P
    LONGERON, D
    MILLER, B
    SPE RESERVOIR ENGINEERING, 1994, 9 (02): : 92 - 100
  • [25] Sensitivity Analysis and Multiobjective Optimization of CO2 Huff-N-Puff Process after Water Flooding in Natural Fractured Tight Oil Reservoirs
    Zhang Jie
    Cai Ming-Jun
    Ge Dangke
    Lu Ning
    Cheng Hai-Ying
    Wang Hai-Feng
    Li Rong-Tao
    GEOFLUIDS, 2021, 2021
  • [26] Optimization of huff-n-puff gas injection in shale oil reservoirs
    James JSheng
    Petroleum, 2017, 3 (04) : 431 - 437
  • [27] Huff-n-Puff Experimental Studies of CO2 with Heavy Oil
    Shilov, Evgeny
    Cheremisin, Alexey
    Maksakov, Kirill
    Kharlanov, Sergey
    ENERGIES, 2019, 12 (22)
  • [28] Experimental study on EOR by CO2 huff-n-puff and CO2 flooding in tight conglomerate reservoirs with pore scale
    Du, Dai-jun
    Pu, Wan-fen
    Jin, Fa-yang
    Liu, Rui
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2020, 156 : 425 - 432
  • [29] Further discussion of CO2 huff-n-puff mechanisms in tight oil reservoirs based on NMR monitored fluids spatial distributions
    Tang, Wei-Yu
    Sheng, James J.
    Jiang, Ting-Xue
    PETROLEUM SCIENCE, 2023, 20 (01) : 350 - 361
  • [30] Performance Evaluation of CO2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs
    Meng, Xingbang
    Meng, Zhan
    Ma, Jixiang
    Wang, Tengfei
    ENERGIES, 2019, 12 (01)