Analysis of the Impact of Machine Translation Evaluation Metrics for Semantic Textual Similarity

被引:1
|
作者
Magnolini, Simone [1 ,2 ]
Ngoc Phuoc An Vo [3 ]
Popescu, Octavian [4 ]
机构
[1] Univ Brescia, Brescia, Italy
[2] FBK, Trento, Italy
[3] Xerox Res Ctr Europe, Meylan, France
[4] IBM TJ Watson Res, Yorktown Hts, NY USA
关键词
Semantic textual similarity; Machine translation evaluation metrics; Paraphrase recognition;
D O I
10.1007/978-3-319-49130-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a work to evaluate the hypothesis that automatic evaluation metrics developed forMachine Translation (MT) systems have significant impact on predicting semantic similarity scores in Semantic Textual Similarity (STS) task, in light of their usage for paraphrase identification. We show that different metrics may have different behaviors and significance along the semantic scale [0-5] of the STS task. In addition, we compare several classification algorithms using a combination of different MT metrics to build an STS system; consequently, we show that although this approach obtains remarkable result in paraphrase identification task, it is insufficient to achieve the same result in STS. We show that this problem is due to an excessive adaptation of some algorithms to dataset domain and at the end a way to mitigate or avoid this issue.
引用
收藏
页码:450 / 463
页数:14
相关论文
共 50 条
  • [31] Textual Entailment Using Different Similarity Metrics
    Saikh, Tanik
    Naskar, Sudip Kumar
    Giri, Chandan
    Bandyopadhyay, Sivaji
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT I, 2015, 9041 : 491 - 501
  • [32] Automatic Metrics for Machine Translation Evaluation and Minority Languages
    Munkova, Dasa
    Munk, Michal
    PROCEEDINGS OF THE MEDITERRANEAN CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGIES 2015 (MEDCT 2015), VOL 2, 2016, 381 : 631 - 636
  • [33] Significance tests of automatic machine translation evaluation metrics
    Zhang, Ying
    Vogel, Stephan
    MACHINE TRANSLATION, 2010, 24 (01) : 51 - 65
  • [34] A comprehensive understanding of popular machine translation evaluation metrics
    Islam, Md Adnanul
    Mukta, Md Saddam Hossain
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2022, 25 (05) : 467 - 478
  • [35] Combining Knowledge Graphs with Semantic Similarity Metrics for Sentiment Analysis
    Swedrak, Piotr
    Adrian, Weronika T.
    Kluza, Krzysztof
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 489 - 501
  • [36] Evaluation of semantic similarity using vector space model based on textual corpus
    Hssina, Badr
    Bouikhalene, Belaid
    Merbouha, Abdelkrim
    2016 13TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, IMAGING AND VISUALIZATION (CGIV), 2016, : 295 - 300
  • [37] Semantic similarity metrics for image registration
    Czolbe, Steffen
    Pegios, Paraskevas
    Krause, Oswin
    Feragen, Aasa
    MEDICAL IMAGE ANALYSIS, 2023, 87
  • [38] Self-selection bias of similarity metrics in translation memory evaluation
    Wolff, Friedel
    Pretorius, Laurette
    Dugast, Loic
    Buitelaar, Paul
    MACHINE TRANSLATION, 2016, 30 (3-4) : 129 - 144
  • [39] Probabilistic Soft Logic for Semantic Textual Similarity
    Beltagy, Islam
    Erk, Katrin
    Mooney, Raymond
    PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, : 1210 - 1219
  • [40] MedSTS: a resource for clinical semantic textual similarity
    Wang, Yanshan
    Afzal, Naveed
    Fu, Sunyang
    Wang, Liwei
    Shen, Feichen
    Rastegar-Mojarad, Majid
    Liu, Hongfang
    LANGUAGE RESOURCES AND EVALUATION, 2020, 54 (01) : 57 - 72