Analysis of the Impact of Machine Translation Evaluation Metrics for Semantic Textual Similarity

被引:1
|
作者
Magnolini, Simone [1 ,2 ]
Ngoc Phuoc An Vo [3 ]
Popescu, Octavian [4 ]
机构
[1] Univ Brescia, Brescia, Italy
[2] FBK, Trento, Italy
[3] Xerox Res Ctr Europe, Meylan, France
[4] IBM TJ Watson Res, Yorktown Hts, NY USA
关键词
Semantic textual similarity; Machine translation evaluation metrics; Paraphrase recognition;
D O I
10.1007/978-3-319-49130-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a work to evaluate the hypothesis that automatic evaluation metrics developed forMachine Translation (MT) systems have significant impact on predicting semantic similarity scores in Semantic Textual Similarity (STS) task, in light of their usage for paraphrase identification. We show that different metrics may have different behaviors and significance along the semantic scale [0-5] of the STS task. In addition, we compare several classification algorithms using a combination of different MT metrics to build an STS system; consequently, we show that although this approach obtains remarkable result in paraphrase identification task, it is insufficient to achieve the same result in STS. We show that this problem is due to an excessive adaptation of some algorithms to dataset domain and at the end a way to mitigate or avoid this issue.
引用
收藏
页码:450 / 463
页数:14
相关论文
共 50 条
  • [21] Influence of Token Similarity Measures for Semantic Textual Similarity
    Sowmya, V.
    Vardhan, Vishnu B.
    Raju, Bhadri M. S. V. S.
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC), 2016, : 41 - 44
  • [22] FlexSTS: A Framework for Semantic Textual Similarity
    Freire, Janio
    Pinheiro, Vadia
    Feitosa, David
    LINGUAMATICA, 2016, 8 (02): : 23 - 31
  • [23] Semantic Textual Similarity in Bengali Text
    Shajalal, Md
    Aono, Masaki
    2018 INTERNATIONAL CONFERENCE ON BANGLA SPEECH AND LANGUAGE PROCESSING (ICBSLP), 2018,
  • [24] Turkish Dataset for Semantic Textual Similarity
    Fikri, Figen Beken
    Oflazer, Kemal
    Yanikoglu, Berrin
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [25] Semantic Textual Similarity in Quality Estimation
    Bechara, Hanna
    Parra Escartin, Carla
    Orasan, Constantin
    Specia, Lucia
    BALTIC JOURNAL OF MODERN COMPUTING, 2016, 4 (02): : 256 - 268
  • [26] Linguistically Conditioned Semantic Textual Similarity
    Tu, Jingxuan
    Xu, Keer
    Yue, Liulu
    Ye, Bingyang
    Rim, Kyeongmin
    Pustejovsky, James
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 1161 - 1172
  • [27] Correlation Coefficients and Semantic Textual Similarity
    Zhelezniak, Vitalii
    Savkov, Aleksandar
    Shen, April
    Hammerla, Nils Y.
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 951 - 962
  • [28] Czech Dataset for Semantic Textual Similarity
    Svoboda, Lukas
    Brychcin, Tomas
    TEXT, SPEECH, AND DIALOGUE (TSD 2018), 2018, 11107 : 213 - 221
  • [29] Semantic Textual Similarity of Sentences with Emojis
    Debnath, Alok
    Pinnaparaju, Nikhil
    Shrivastava, Manish
    Varma, Vasudeva
    Augenstein, Isabelle
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 426 - 430
  • [30] SentSim: Crosslingual Semantic Evaluation of Machine Translation
    Song, Yurun
    Zhao, Junchen
    Specia, Lucia
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 3143 - 3156