Analysis of the Impact of Machine Translation Evaluation Metrics for Semantic Textual Similarity

被引:1
|
作者
Magnolini, Simone [1 ,2 ]
Ngoc Phuoc An Vo [3 ]
Popescu, Octavian [4 ]
机构
[1] Univ Brescia, Brescia, Italy
[2] FBK, Trento, Italy
[3] Xerox Res Ctr Europe, Meylan, France
[4] IBM TJ Watson Res, Yorktown Hts, NY USA
关键词
Semantic textual similarity; Machine translation evaluation metrics; Paraphrase recognition;
D O I
10.1007/978-3-319-49130-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a work to evaluate the hypothesis that automatic evaluation metrics developed forMachine Translation (MT) systems have significant impact on predicting semantic similarity scores in Semantic Textual Similarity (STS) task, in light of their usage for paraphrase identification. We show that different metrics may have different behaviors and significance along the semantic scale [0-5] of the STS task. In addition, we compare several classification algorithms using a combination of different MT metrics to build an STS system; consequently, we show that although this approach obtains remarkable result in paraphrase identification task, it is insufficient to achieve the same result in STS. We show that this problem is due to an excessive adaptation of some algorithms to dataset domain and at the end a way to mitigate or avoid this issue.
引用
收藏
页码:450 / 463
页数:14
相关论文
共 50 条
  • [1] Textual Entailment Using Machine Translation Evaluation Metrics
    Saikh, Tanik
    Naskar, Sudip Kumar
    Ekbal, Asif
    Bandyopadhyay, Sivaji
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2017), PT I, 2018, 10761 : 317 - 328
  • [2] Prologue Evaluation of Semantic Similarity and Textual Inference
    Fonseca, Erick
    Santos, Leandro
    Criscuolo, Marcelo
    Aluisio, Sandra
    LINGUAMATICA, 2016, 8 (02): : IX - IX
  • [3] Overview of the Evaluation of Semantic Similarity and Textual Inference
    Fonseca, Erick Rocha
    dos Santos, Leandro Borges
    Criscuolo, Marcelo
    Aluisio, Sandra Maria
    LINGUAMATICA, 2016, 8 (02): : 3 - 13
  • [4] Linguistic analysis of datasets for semantic textual similarity
    Wang, Chunlin
    Castellon, Irene
    Comelles, Elisabet
    DIGITAL SCHOLARSHIP IN THE HUMANITIES, 2020, 35 (02) : 471 - 484
  • [5] Semantic Evaluation of Machine Translation
    Wong, Billy Tak-Ming
    LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2010, : 2884 - 2888
  • [6] Paraphrase Detection Using Machine Translation and Textual Similarity Algorithms
    Kravchenko, Dmitry
    ARTIFICIAL INTELLIGENCE AND NATURAL LANGUAGE, 2018, 789 : 277 - 292
  • [7] Extrinsic Evaluation of Machine Translation Metrics
    Moghe, Nikita
    Sherborne, Tom
    Steedman, Mark
    Birch, Alexandra
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 13060 - 13078
  • [8] A Survey on Evaluation Metrics for Machine Translation
    Lee, Seungjun
    Lee, Jungseob
    Moon, Hyeonseok
    Park, Chanjun
    Seo, Jaehyung
    Eo, Sugyeong
    Koo, Seonmin
    Lim, Heuiseok
    MATHEMATICS, 2023, 11 (04)
  • [9] SemSyn: Semantic-Syntactic Similarity Based Automatic Machine Translation Evaluation Metric
    Chauhan, Shweta
    Kumar, Rahul
    Saxena, Shefali
    Kaur, Amandeep
    Daniel, Philemon
    IETE JOURNAL OF RESEARCH, 2024, 70 (04) : 3823 - 3834
  • [10] Text summary evaluation based on interpretable semantic textual similarity
    Majumder, Goutam
    Rajput, Vikrant
    Pakray, Partha
    Bandyopadhyay, Sivaji
    Favre, Benoit
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 83 (1) : 3233 - 3258