Control of the Geometric Phase and Nonequivalence between Geometric-Phase Definitions in the Adiabatic Limit

被引:14
|
作者
Zhu, Xiaosong [1 ,2 ,3 ,4 ]
Lu, Peixiang [2 ,3 ,4 ]
Lein, Manfred [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[4] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-FREQUENCY THEORY; TOPOLOGICAL PHASE; BERRYS PHASE; STATES; IONIZATION; PROOF;
D O I
10.1103/PhysRevLett.128.030401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
If the time evolution of a quantum state leads back to the initial state, a geometric phase is accumulated that is known as the Berry phase for adiabatic evolution or as the Aharonov-Anandan (AA) phase for nonadiabatic evolution. We evaluate these geometric phases using Floquet theory for systems in time-dependent external fields with a focus on paths leading through a degeneracy of the eigenenergies. Contrary to expectations, the low-frequency limits of the two phases do not always coincide. This happens as the degeneracy leads to a slow convergence of the quantum states to adiabaticity, resulting in a nonzero finite or divergent contribution to the AA phase. Steering the system adiabatically through a degeneracy provides control over the geometric phase as it can cause a pi shift of the Berry phase. On the other hand, we revisit an example of degeneracy crossing proposed by AA. We find that, at suitable driving frequencies, both geometric-phase definitions give the same result and the dynamical phase is zero due to the symmetry of time evolution about the point of degeneracy, providing an advantageous setup for manipulation of quantum states.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] GEOMETRIC PHASE IN SPIN PRECESSION AND THE ADIABATIC APPROXIMATION
    NI, GJ
    CHEN, SQ
    SHEN, YL
    PHYSICS LETTERS A, 1995, 197 (02) : 100 - 106
  • [42] Adiabatic geometric phase in the nonlinear coherent coupler
    Zhang, L. D.
    Fu, L. B.
    Liu, J.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 65 (03): : 557 - 561
  • [43] Control of Geometric Phase by Dynamic Phase
    Leinonen, Aleksi
    Visser, Taco D.
    Friberg, Ari T.
    Hakala, Tommi K.
    PHYSICAL REVIEW APPLIED, 2024, 21 (01)
  • [44] Adiabatic quantum counting by geometric phase estimation
    Zhang, Chi
    Wei, Zhaohui
    Papageorgiou, Anargyros
    QUANTUM INFORMATION PROCESSING, 2010, 9 (03) : 369 - 383
  • [45] Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces
    Song, Qinghua
    Baroni, Arthur
    Sawant, Rajath
    Ni, Peinan
    Brandli, Virginie
    Chenot, Sebastien
    Vezian, Stephane
    Damilano, Benjamin
    de Mierry, Philippe
    Khadir, Samira
    Ferrand, Patrick
    Genevet, Patrice
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [46] Geometric representation and the adiabatic geometric phase in four-wave mixing processes
    Li, Yongyao
    Lu, Jiantao
    Fu, Shenhe
    Arie, Ady
    OPTICS EXPRESS, 2021, 29 (05) : 7288 - 7306
  • [47] Orbital Angular Momentum Generation and Detection by Geometric-Phase Based Metasurfaces
    Chen, Menglin L. N.
    Jiang, Li Jun
    Sha, Wei E. I.
    APPLIED SCIENCES-BASEL, 2018, 8 (03):
  • [48] Transmission-mode geometric-phase signatures of circular Bragg phenomenon
    Lakhtakia, Akhlesh
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (02) : 500 - 507
  • [49] Optimization of aspheric geometric-phase lenses for improved field-of-view
    Hornburg, Kathryn J.
    Xiang, Xiao
    Kudenov, Michael W.
    Escuti, Michael J.
    OPTICAL MODELING AND PERFORMANCE PREDICTIONS X, 2018, 10743
  • [50] Self-interference digital holography with a geometric-phase hologram lens
    Choi, Kihong
    Yim, Junkyu
    Yoo, Seunghwi
    Min, Sung-Wook
    OPTICS LETTERS, 2017, 42 (19) : 3940 - 3943