Control of the Geometric Phase and Nonequivalence between Geometric-Phase Definitions in the Adiabatic Limit

被引:14
|
作者
Zhu, Xiaosong [1 ,2 ,3 ,4 ]
Lu, Peixiang [2 ,3 ,4 ]
Lein, Manfred [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[4] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-FREQUENCY THEORY; TOPOLOGICAL PHASE; BERRYS PHASE; STATES; IONIZATION; PROOF;
D O I
10.1103/PhysRevLett.128.030401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
If the time evolution of a quantum state leads back to the initial state, a geometric phase is accumulated that is known as the Berry phase for adiabatic evolution or as the Aharonov-Anandan (AA) phase for nonadiabatic evolution. We evaluate these geometric phases using Floquet theory for systems in time-dependent external fields with a focus on paths leading through a degeneracy of the eigenenergies. Contrary to expectations, the low-frequency limits of the two phases do not always coincide. This happens as the degeneracy leads to a slow convergence of the quantum states to adiabaticity, resulting in a nonzero finite or divergent contribution to the AA phase. Steering the system adiabatically through a degeneracy provides control over the geometric phase as it can cause a pi shift of the Berry phase. On the other hand, we revisit an example of degeneracy crossing proposed by AA. We find that, at suitable driving frequencies, both geometric-phase definitions give the same result and the dynamical phase is zero due to the symmetry of time evolution about the point of degeneracy, providing an advantageous setup for manipulation of quantum states.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Geometric-phase grating as an optical vortex generator and detector
    Marco, David
    Sanchez-Lopez, Maria M.
    Cofre, Aaron
    Vargas, Asticio
    Moreno, Ignacio
    OPTICAL SENSING AND DETECTION VI, 2021, 11354
  • [22] Fabrication of ideal geometric-phase holograms with arbitrary wavefronts
    Kim, Jihwan
    Li, Yanming
    Miskiewicz, Matthew N.
    Oh, Chulwoo
    Kudenov, Michael W.
    Escuti, Michael J.
    OPTICA, 2015, 2 (11): : 958 - 964
  • [23] Quantum adiabatic approximation and the geometric phase
    Mostafazadeh, A
    PHYSICAL REVIEW A, 1997, 55 (03): : 1653 - 1664
  • [24] Relativistic adiabatic approximation and geometric phase
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (38): : 7829 - 7845
  • [25] Quantum adiabatic approximation and the geometric phase
    Mostafazadeh, Ali
    Physical Review A. Atomic, Molecular, and Optical Physics, 1997, 55 (03):
  • [26] A note on the geometric phase in adiabatic approximation
    Tong, DM
    Singh, K
    Kwek, LC
    Fan, XJ
    Oh, CH
    PHYSICS LETTERS A, 2005, 339 (3-5) : 288 - 293
  • [27] Design and fabrication of an aspheric geometric-phase lens doublet
    Hornburg, Kathryn J.
    Xiang, Xiao
    Kim, Jihwan
    Kudenov, Michael W.
    Escuti, Michael J.
    LIQUID CRYSTALS XXII, 2018, 10735
  • [28] Geometric phase gates with adiabatic control in electron spin resonance
    Wu, Hua
    Gauger, Erik M.
    George, Richard E.
    Mottonen, Mikko
    Riemann, Helge
    Abrosimov, Nikolai V.
    Becker, Peter
    Pohl, Hans-Joachim
    Itoh, Kohei M.
    Thewalt, Mike L. W.
    Morton, John J. L.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [29] Full-Dimensional Geometric-Phase Spatial Light Metamodulation
    Zeng, Jinwei
    Zhang, Jinrun
    Dong, Yajuan
    Wang, Jian
    NANO LETTERS, 2024, 24 (30) : 9229 - 9236
  • [30] Geometric-phase backaction in a mesoscopic qubit-oscillator system
    Vacanti, G.
    Fazio, R.
    Kim, M. S.
    Palma, G. M.
    Paternostro, M.
    Vedral, V.
    PHYSICAL REVIEW A, 2012, 85 (02):