Generalized isotopic shift construction for APN functions

被引:10
|
作者
Budaghyan, Lilya [1 ]
Calderini, Marco [1 ]
Carlet, Claude [1 ,2 ]
Coulter, Robert [3 ]
Villa, Irene [1 ]
机构
[1] Univ Bergen, Dept Informat, PB 7803, N-5020 Bergen, Norway
[2] Univ Paris 08, LAGA, St Denis, France
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
APN functions; Isotopic shift; Vectorial Boolean functions;
D O I
10.1007/s10623-020-00803-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work we give several generalizations of the isotopic shift construction, introduced recently by Budaghyan et al. (IEEE Trans Inform Theory 66:5299-5309, 2020), when the initial function is a Gold function. In particular, we derive a general construction of APN functions which covers several unclassified APN functions for n = 8 and produces fifteen new APN functions for n = 9.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 50 条
  • [31] On the symmetric properties of APN functions
    Vitkup V.A.
    Journal of Applied and Industrial Mathematics, 2016, 10 (1) : 126 - 135
  • [32] On some quadratic APN functions
    Hiroaki Taniguchi
    Designs, Codes and Cryptography, 2019, 87 : 1973 - 1983
  • [33] On some quadratic APN functions
    Taniguchi, Hiroaki
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (09) : 1973 - 1983
  • [34] On the differential equivalence of APN functions
    Gorodilova, Anastasiya
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04): : 793 - 813
  • [35] On the exceptionality of rational APN functions
    Bartoli, Daniele
    Fatabbi, Giuliana
    Ghiandoni, Francesco
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (10) : 3167 - 3186
  • [36] On the exceptionality of rational APN functions
    Daniele Bartoli
    Giuliana Fatabbi
    Francesco Ghiandoni
    Designs, Codes and Cryptography, 2023, 91 : 3167 - 3186
  • [38] Partially APN functions with APN-like polynomial representations
    Budaghyan, Lilya
    Kaleyski, Nikolay
    Riera, Constanza
    Stanica, Pantelimon
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (06) : 1159 - 1177
  • [39] A NEW GENERAL CONSTRUCTION FOR GENERALIZED BENT FUNCTIONS
    CHUNG, H
    KUMAR, PV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 206 - 209
  • [40] CONSTRUCTION OF SYMMETRIC FUNCTIONS OF GENERALIZED TRIBONACCI NUMBERS
    Chelgham, Mourad
    Boussayoud, Ali
    JOURNAL OF SCIENCE AND ARTS, 2020, (01): : 65 - 74