On the exceptionality of rational APN functions

被引:0
|
作者
Daniele Bartoli
Giuliana Fatabbi
Francesco Ghiandoni
机构
[1] Università degli studi di Perugia,Dipartimento di Matematica e Informatica
[2] Università degli Studi di Perugia,Dipartimento di Matematica e Informatica
[3] Università degli studi di Firenze,Dipartimento di Matematica e Informatica Ulisse Dini
来源
关键词
APN functions; Algebraic varieties; Finite fields; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate APN functions which can be represented as rational functions and we provide non-existence results exploiting the connection between these functions and specific algebraic varieties over finite fields. This approach allows to classify families of functions when previous approaches cannot be applied.
引用
收藏
页码:3167 / 3186
页数:19
相关论文
共 50 条
  • [1] On the exceptionality of rational APN functions
    Bartoli, Daniele
    Fatabbi, Giuliana
    Ghiandoni, Francesco
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (10) : 3167 - 3186
  • [2] Equivalences of power APN functions with power or quadratic APN functions
    Yoshiara, Satoshi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (03) : 561 - 585
  • [3] Equivalences of power APN functions with power or quadratic APN functions
    Satoshi Yoshiara
    Journal of Algebraic Combinatorics, 2016, 44 : 561 - 585
  • [4] On equivalence between known polynomial APN functions and power APN functions
    Wan, Qianhong
    Qu, Longjiang
    Li, Chao
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 71
  • [5] Partially APN Boolean functions and classes of functions that are not APN infinitely often
    Budaghyan, Lilya
    Kaleyski, Nikolay S.
    Kwon, Soonhak
    Riera, Constanza
    Stanica, Pantelimon
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (03): : 527 - 545
  • [6] Partially APN Boolean functions and classes of functions that are not APN infinitely often
    Lilya Budaghyan
    Nikolay S. Kaleyski
    Soonhak Kwon
    Constanza Riera
    Pantelimon Stănică
    Cryptography and Communications, 2020, 12 : 527 - 545
  • [7] APN-FUNCTIONS
    Tuzhilin, M. E.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2009, 5 (03): : 14 - 20
  • [8] On equivalence between two known families of APN polynomial functions and APN power functions
    Qianhong Wan
    Chao Li
    Cryptography and Communications, 2022, 14 : 161 - 182
  • [9] The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions
    Konstantin Kalgin
    Valeriya Idrisova
    Cryptography and Communications, 2023, 15 : 239 - 256
  • [10] The classification of quadratic APN functions in 7 variables and combinatorial approaches to search for APN functions
    Kalgin, Konstantin
    Idrisova, Valeriya
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (02): : 239 - 256