Topological Loewner theory on Riemann surfaces

被引:2
|
作者
Contreras, Manuel D. [1 ]
Diaz-Madrigal, Santiago
机构
[1] Univ Seville, Dept Matemat Aplicada 2, Camino Descubrimientos S-N, Seville 41092, Spain
关键词
Evolution families; Loewner chains; Riemann surfaces; EVOLUTION FAMILIES;
D O I
10.1016/j.jmaa.2020.124525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that topological evolution families on a Riemann surface S are rather trivial unless S is conformally equivalent to the unit disc or the punctuated unit disc. We also prove that, except for the torus where there is no non-trivial continuous Loewner chain, there is a topological evolution family associated to any topological Loewner chain and, conversely, any topological evolution family comes from a topological Loewner chain on the same Riemann surface. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Conformal versus topological conjugacy of automorphisms on compact Riemann surfaces
    GonzalezDiez, G
    Hidalgo, RA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 280 - 284
  • [22] Topological locally finite MV-algebras and Riemann surfaces
    Kukkurainen, Paavo
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2007, 32 (01) : 215 - 222
  • [23] On the topological type of anticonformal square roots of automorphisms of Riemann surfaces
    Costa, AF
    MANUSCRIPTA MATHEMATICA, 1996, 89 (01) : 87 - 102
  • [24] A TOPOLOGICAL CHARACTERIZATION OF THE STRONG DISK PROPERTY ON OPEN RIEMANN SURFACES
    Abe, Makoto
    Nakamura, Gou
    Shiga, Hiroshige
    KODAI MATHEMATICAL JOURNAL, 2019, 42 (03) : 587 - 592
  • [25] On the topological types of symmetries of elliptic-hyperelliptic Riemann surfaces
    Bujalance, JA
    Costa, AF
    Porto, AM
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 140 (1) : 145 - 155
  • [26] On the topological types of symmetries of elliptic-hyperelliptic Riemann surfaces
    José A. Bujalance
    Antonio F. Costa
    Ana M. Porto
    Israel Journal of Mathematics, 2004, 140 : 145 - 155
  • [27] E-String Theory on Riemann Surfaces
    Kim, Hee-Cheol
    Razamat, Shlomo S.
    Vafa, Cumrun
    Zafrir, Gabi
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (01):
  • [28] LIOUVILLE THEORY - QUANTUM GEOMETRY OF RIEMANN SURFACES
    TAKHTAJAN, LA
    MODERN PHYSICS LETTERS A, 1993, 8 (37) : 3529 - 3535
  • [29] Remarks on quantum vortex theory on Riemann surfaces
    Penna, V
    Spera, M
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 27 (1-2) : 99 - 112
  • [30] Prime ends in the mapping theory on the Riemann surfaces
    Ryazanov V.
    Volkov S.
    Journal of Mathematical Sciences, 2017, 227 (1) : 81 - 97