We prove that topological evolution families on a Riemann surface S are rather trivial unless S is conformally equivalent to the unit disc or the punctuated unit disc. We also prove that, except for the torus where there is no non-trivial continuous Loewner chain, there is a topological evolution family associated to any topological Loewner chain and, conversely, any topological evolution family comes from a topological Loewner chain on the same Riemann surface. (c) 2020 Elsevier Inc. All rights reserved.