Large networks of vertical multi-layer graphenes with morphology-tunable magnetoresistance

被引:33
|
作者
Yue, Zengji [1 ,2 ]
Levchenko, Igor [2 ,3 ]
Kumar, Shailesh [2 ,3 ]
Seo, Donghan [2 ,3 ]
Wang, Xiaolin [1 ]
Dou, Shixue [1 ]
Ostrikov, Kostya [1 ,2 ,3 ]
机构
[1] Univ Wollongong, Fac Engn, ISEM, Wollongong, NSW 2522, Australia
[2] CSIRO Mat Sci & Engn, PNCA, Lindfield, NSW 2070, Australia
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
ELECTRONIC-PROPERTIES; REACTIVE PLASMAS; LAYER GRAPHENE;
D O I
10.1039/c3nr00550j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties.
引用
收藏
页码:9283 / 9288
页数:6
相关论文
共 50 条
  • [41] Swapped Sectors Detection on Multi-Layer Networks
    Kaddoura, Omar
    Sanchez-Sanchez, Juan J.
    Serrano, Inmaculada
    Barco, Raquel
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (11) : 2342 - 2345
  • [42] Energy efficient multi-layer femtocell networks
    Zhang, Jun
    Labiod, Houda
    2016 8TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2016,
  • [43] Capacity Analysis of Multi-layer Satellite Networks
    Zhu, Xiangming
    Jiang, Chunxiao
    Kuang, Linling
    Dong, Mianxiong
    Zhao, Zhifeng
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 251 - 256
  • [44] Reinforcement of extrapolation of multi-layer neural networks
    Aoyama, T
    Wang, QY
    Nagashima, U
    Yoshihara, I
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2495 - 2500
  • [45] A path finding implementation for multi-layer networks
    Dijkstra, Freek
    van der Ham, Jeroen
    Grosso, Paola
    de Laat, Cees
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING THEORY METHODS AND APPLICATIONS, 2009, 25 (02): : 142 - 146
  • [46] Multi-Layer Interdigitated Power Distribution Networks
    Jakushokas, Renatas
    Friedman, Eby G.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (05) : 774 - 786
  • [47] Multi-Layer Neuromorphic Synapse for Reconfigurable Networks
    Zjajo, Amir
    Kumar, Sumeet
    van Leuken, Rene
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 997 - 1000
  • [48] MULTI-LAYER NEURAL NETWORKS FOR SALES FORECASTING
    Scherer, Magdalena
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2018, 17 (01) : 61 - 68
  • [49] A multi-layer planning approach for WDM Networks
    VanParys, W
    Wauters, N
    Demeester, P
    PHOTONIC NETWORKS, OPTICAL TECHNOLOGY AND INFRASTRUCTURE - NOC '97, 1997, : 87 - 94
  • [50] Software Defined Multicast for Large-Scale Multi-Layer LEO Satellite Networks
    Hu, Menglan
    Li, Jun
    Cai, Chao
    Deng, Tianping
    Xu, Wenbo
    Dong, Yan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (03): : 2119 - 2130