Large networks of vertical multi-layer graphenes with morphology-tunable magnetoresistance

被引:33
|
作者
Yue, Zengji [1 ,2 ]
Levchenko, Igor [2 ,3 ]
Kumar, Shailesh [2 ,3 ]
Seo, Donghan [2 ,3 ]
Wang, Xiaolin [1 ]
Dou, Shixue [1 ]
Ostrikov, Kostya [1 ,2 ,3 ]
机构
[1] Univ Wollongong, Fac Engn, ISEM, Wollongong, NSW 2522, Australia
[2] CSIRO Mat Sci & Engn, PNCA, Lindfield, NSW 2070, Australia
[3] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
ELECTRONIC-PROPERTIES; REACTIVE PLASMAS; LAYER GRAPHENE;
D O I
10.1039/c3nr00550j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties.
引用
收藏
页码:9283 / 9288
页数:6
相关论文
共 50 条
  • [31] Joint network design in multi-layer networks
    Zhu, GL
    Zeng, QJ
    Ye, T
    Yang, JJ
    APOC 2003: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; NETWORK ARCHITECTURES, MANAGEMENT, AND APPLICATIONS, PTS 1 AND 2, 2003, 5282 : 460 - 469
  • [32] Are multi-layer backpropagation networks catastrophically amnesic?
    Yamaguchi, M
    SCANDINAVIAN JOURNAL OF PSYCHOLOGY, 2004, 45 (05) : 357 - 361
  • [33] Availability analysis of multi-layer optical networks
    Jereb, L
    Jakab, T
    Unghváry, F
    OPTICOMM 2000: OPTICAL NETWORKING AND COMMUNICATIONS, 2000, 4233 : 303 - 314
  • [34] Efficient segmentation in multi-layer oscillatory networks
    Rao, A. Ravishankar
    Cecchi, Guillermo A.
    Peck, Charles C.
    Kozloski, James R.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2966 - 2973
  • [35] Traffic Resource Allocation for Multi-Layer Networks
    Du, Changfeng
    Ma, Jinlong
    Zhang, Dongwen
    IEEE ACCESS, 2020, 8 : 132134 - 132143
  • [36] Resilience Characterization for Multi-Layer Infrastructure Networks
    Ulak, Mehmet Baran
    Sriram, Lalitha Madhavi Konila
    Kocatepe, Ayberk
    Ozguven, Eren Erman
    Arghandeh, Reza
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2022, 14 (04) : 121 - 132
  • [37] Multi-layer graph analytics for social networks
    Oselio, Brandon
    Kulesza, Alex
    Hero, Alfred O., III
    2013 IEEE 5TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2013), 2013, : 284 - 287
  • [38] Multi-Layer Offloading at the Edge for Vehicular Networks
    Busacca, Fabio
    Cirino, Carla
    Faraci, Giuseppe
    Grasso, Christian
    Palazzo, Sergio
    Schembra, Giovanni
    2020 MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE (MEDCOMNET), 2020,
  • [39] Spare capacity allocation in multi-layer networks
    Liu, Y
    Tipper, D
    Vajanapoom, K
    5th International Workshop on Design of Reliable Communication Networks, Proceedings: RELIABLE NETWORKS FOR RELIABLE SERVICES, 2005, : 261 - 268
  • [40] Prospects and challenges of multi-layer optical networks
    Sato, Ken-ichi
    Hasegawa, Hiroshi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2007, E90B (08) : 1890 - 1902