Hydrological impacts of land use/cover changes in the Lake Victoria basin

被引:10
|
作者
Liu, Yongwei [1 ]
Wu, Guiping [1 ]
Fan, Xingwang [1 ]
Gan, Guojing [1 ]
Wang, Wen [2 ]
Liu, Yuanbo [1 ]
机构
[1] Chinese Acad Sci, Nanjing Inst Geog & Limnol, Key Lab Watershed Geog Sci, Nanjing, Peoples R China
[2] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul Eng, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
LULC changes; Lake Victoria basin; SWAT; Drought; BLUE NILE BASIN; ASSESSMENT-TOOL SWAT; CLIMATE-CHANGE; COVER CHANGE; WATER-RESOURCES; SURFACE RUNOFF; LOESS PLATEAU; RIVER-BASIN; CATCHMENT; SOIL;
D O I
10.1016/j.ecolind.2022.109580
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Understanding the hydrological impacts of land use and land cover (LULC) changes is significant for sustainable water resources management and planning. The Lake Victoria basin (LVB) has experienced extensive forest and grass degradation and agricultural land expansion under rapid socio-economic development and population growth in recent decades. However, the hydrological impacts of LULC changes for the whole LVB is still poorly documented. This study first investigated the LULC changing effects of LVB, focusing on its impacts on the annual and seasonal runoff and the hydrological drought based on a distributed hydrological modeling of the Soil and Water Assessment Tool (SWAT). SWAT model showed comparatively good applicability in seasonal runoff simulation of LVB, with the percent bias (PBIAS) kept within +/- 20 % and the coefficient of determination (R2) over 0.6 at ten hydrological stations available over the calibration and validation phases. Generally, the annual runoff obtained a monthly increase of 1.5 mm under collective LULC changes. Moreover, the LULC effects presented considerable seasonal dependence. A largest runoff increase of approximately 4 mm was detected in short rainy season attributed to the combined surface runoff and groundwater increase. Insignificant runoff increase was observed in long rainy and dry seasons under the complementary effects of surface runoff increase and groundwater decrease. Additionally, the hydrological drought was generally aggravated with increased drought frequency and lengthened duration, particularly for the central western and eastern regions with massive conversion of forest to agricultural land. The findings provide importance implication for rational water resources management and drought disaster response for the LVB.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Analysis of Changes in Land Use/Land Cover and Hydrological Processes Caused by Earthquakes in the Atsuma River Basin in Japan
    Chen, Yuechao
    Nakatsugawa, Makoto
    SUSTAINABILITY, 2021, 13 (23)
  • [42] Assessment of land use land cover change impact on hydrological regime of a basin
    Garg, Vaibhav
    Aggarwal, S. P.
    Gupta, Prasun K.
    Nikam, Bhaskar R.
    Thakur, Praveen K.
    Srivastav, S. K.
    Kumar, A. Senthil
    ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (18)
  • [43] Assessment of land use land cover change impact on hydrological regime of a basin
    Vaibhav Garg
    S. P. Aggarwal
    Prasun K. Gupta
    Bhaskar R. Nikam
    Praveen K. Thakur
    S. K. Srivastav
    A. Senthil Kumar
    Environmental Earth Sciences, 2017, 76
  • [44] Hydrological responses to human-induced land use/land cover changes in the Gidabo River basin, Ethiopia
    Aragaw, Henok Mekonnen
    Goel, Manmohan Kumar
    Mishra, Surendra Kumar
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2021, 66 (04): : 640 - 655
  • [45] Effects of Climate and Land Use/Land Cover Changes on Water Yield Services in the Dongjiang Lake Basin
    Mo, Wenbo
    Zhao, Yunlin
    Yang, Nan
    Xu, Zhenggang
    Zhao, Weiping
    Li, Feng
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)
  • [46] Monitoring and prediction of land use/land cover changes and water requirements in the basin of the Urmia Lake, Iran
    Roushangar, Kiyoumars
    Alami, Mohammad Taghi
    Golmohammadi, Hassan
    Shahnazi, Saman
    WATER SUPPLY, 2023, 23 (06) : 2299 - 2312
  • [47] Impacts of land use and land cover changes on regional climate in the Lhasa River basin, Tibetan Plateau
    Li, Dan
    Tian, Peipei
    Luo, Hongying
    Hu, Tiesong
    Dong, Bin
    Cui, Yuanlai
    Khan, Shahbaz
    Luo, Yufeng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 742
  • [48] Assessing the Impacts of Land Use/Land Cover Changes on Water Resources of the Nile River Basin, Ethiopia
    Gedefaw, Mohammed
    Denghua, Yan
    Girma, Abel
    ATMOSPHERE, 2023, 14 (04)
  • [49] The impacts of changes in climate and land use on hydrological processes
    Romanowicz, Renata J.
    ACTA GEOPHYSICA, 2017, 65 (04): : 785 - 787
  • [50] The impacts of changes in climate and land use on hydrological processes
    Renata J. Romanowicz
    Acta Geophysica, 2017, 65 : 785 - 787