Hydrological impacts of land use/cover changes in the Lake Victoria basin

被引:10
|
作者
Liu, Yongwei [1 ]
Wu, Guiping [1 ]
Fan, Xingwang [1 ]
Gan, Guojing [1 ]
Wang, Wen [2 ]
Liu, Yuanbo [1 ]
机构
[1] Chinese Acad Sci, Nanjing Inst Geog & Limnol, Key Lab Watershed Geog Sci, Nanjing, Peoples R China
[2] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul Eng, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
LULC changes; Lake Victoria basin; SWAT; Drought; BLUE NILE BASIN; ASSESSMENT-TOOL SWAT; CLIMATE-CHANGE; COVER CHANGE; WATER-RESOURCES; SURFACE RUNOFF; LOESS PLATEAU; RIVER-BASIN; CATCHMENT; SOIL;
D O I
10.1016/j.ecolind.2022.109580
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Understanding the hydrological impacts of land use and land cover (LULC) changes is significant for sustainable water resources management and planning. The Lake Victoria basin (LVB) has experienced extensive forest and grass degradation and agricultural land expansion under rapid socio-economic development and population growth in recent decades. However, the hydrological impacts of LULC changes for the whole LVB is still poorly documented. This study first investigated the LULC changing effects of LVB, focusing on its impacts on the annual and seasonal runoff and the hydrological drought based on a distributed hydrological modeling of the Soil and Water Assessment Tool (SWAT). SWAT model showed comparatively good applicability in seasonal runoff simulation of LVB, with the percent bias (PBIAS) kept within +/- 20 % and the coefficient of determination (R2) over 0.6 at ten hydrological stations available over the calibration and validation phases. Generally, the annual runoff obtained a monthly increase of 1.5 mm under collective LULC changes. Moreover, the LULC effects presented considerable seasonal dependence. A largest runoff increase of approximately 4 mm was detected in short rainy season attributed to the combined surface runoff and groundwater increase. Insignificant runoff increase was observed in long rainy and dry seasons under the complementary effects of surface runoff increase and groundwater decrease. Additionally, the hydrological drought was generally aggravated with increased drought frequency and lengthened duration, particularly for the central western and eastern regions with massive conversion of forest to agricultural land. The findings provide importance implication for rational water resources management and drought disaster response for the LVB.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Integrated and Individual Impacts of Land Use Land Cover and Climate Changes on Hydrological Flows over Birr River Watershed, Abbay Basin, Ethiopia
    Malede, Demelash Ademe
    Alamirew, Tena
    Andualem, Tesfa Gebrie
    WATER, 2023, 15 (01)
  • [32] Impacts of land use changes on hydrological components and macroinvertebrate distributions in the Poyang lake area
    Schmalz, B.
    Kuemmerlen, M.
    Kiesel, J.
    Cai, Q.
    Jaehnig, S. C.
    Fohrer, N.
    ECOHYDROLOGY, 2015, 8 (06) : 1119 - 1136
  • [33] Impacts of Land Use and Land Cover Changes on Sediment Yield in a Brazilian Amazon Drainage Basin
    Maeda, Eduardo Eiji
    Formaggio, Antonio Roberto
    Shimabukuro, Yosio Edemir
    GISCIENCE & REMOTE SENSING, 2008, 45 (04) : 443 - 453
  • [34] Impacts of Climate and Land-Use Changes on the Hydrological Processes in the Amur River Basin
    Zhou, Shilun
    Zhang, Wanchang
    Guo, Yuedong
    WATER, 2020, 12 (01)
  • [35] Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing
    Wasige, John E.
    Groen, Thomas A.
    Smaling, Eric
    Jetten, Victor
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 21 : 32 - 42
  • [36] Assessing the impacts of land use/land cover changes on hydrological processes in Southern Ethiopia: The SWAT model approach
    Kuma, Hailu Gisha
    Feyessa, Fekadu Fufa
    Demissie, Tamene Adugna
    COGENT ENGINEERING, 2023, 10 (01):
  • [37] Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model
    Edivaldo Afonso de Oliveira Serr?o
    Madson Tavares Silva
    Thomás Rocha Ferreira
    Lorena Concei??o Paiva de Ataide
    Cleber Assis dos Santos
    Aline Maria Meiguins de Lima
    Vicente de Paulo Rodrigues da Silva
    Francisco de Assis Salviano de Sousa
    Denis José Cardoso Gomes
    International Journal of Sediment Research, 2022, 37 (01) : 54 - 69
  • [38] Comparative analysis of hydrological impacts from climate and land use/land cover changes in a lowland mesoscale catchment
    Ali, Muhammad Haris
    Bertini, Claudia
    Popescu, Ioana
    Jonoski, Andreja
    INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2025,
  • [39] Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model
    de Oliveira Serrao, Edivaldo Afonso
    Silva, Madson Tavares
    Ferreira, Thomas Rocha
    Paiva de Ataide, Lorena Conceicao
    dos Santos, Cleber Assis
    Meiguins de Lima, Aline Maria
    Rodrigues da Silva, Vicente de Paulo
    Salviano de Sousa, Francisco de Assis
    Cardoso Gomes, Denis Jose
    INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2022, 37 (01) : 54 - 69
  • [40] Impacts of land use and land cover change on the landscape pattern and ecosystem services in the Poyang Lake Basin, China
    Zeng, Xiaoji
    Huang, Yingpeng
    Xie, Hualin
    Ma, Qun
    Li, Jiacheng
    LANDSCAPE ECOLOGY, 2024, 39 (11)