RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS

被引:16
|
作者
Barros, A. [1 ]
Batista, R. [1 ]
Ribeiro, E., Jr. [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
D O I
10.1215/ijm/1399395831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that either, a Euclidean space R-n, or a standard sphere S-n, is the unique manifold with nonnegative scalar curvature which carries a structure of a gradient almost Ricci soliton, provided this gradient is a non trivial conformal vector field. Moreover, in the spherical case the field is given by the first eigenfunction of the Laplacian. Finally, we shall show that a compact locally conformally flat almost Ricci soliton is isometric to Euclidean sphere S-n provided an integral condition holds.
引用
收藏
页码:1267 / 1279
页数:13
相关论文
共 50 条
  • [31] On the rigidity of hyperbolic Ricci solitons
    Poddar, Rahul
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
  • [32] Infinitesimal rigidity of collapsed gradient steady Ricci solitons in dimension three
    Cao, Huai-Dong
    He, Chenxu
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2018, 26 (03) : 505 - 529
  • [33] Some rigidity results for noncompact gradient steady Ricci solitons and Ricci-flat manifolds
    He, Fei
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 52 : 181 - 200
  • [34] BACH-FLAT h-ALMOST GRADIENT RICCI SOLITONS
    Yun, Gabjin
    Co, Jinseok
    Hwang, Seungsu
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 288 (02) : 475 - 488
  • [35] Gradient h-almost Ricci solitons on warped product manifolds
    Shen, Dong
    Liu, Jiancheng
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 207
  • [36] Some Characterizations on Gradient Almost r]-Ricci-Bourguignon Solitons
    Traore, Moctar
    Tastan, Hakan Mete
    Aydin, Sibel Gerdan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [37] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [38] Back to Almost Ricci Solitons
    Rovenski, Vladimir
    Stepanov, Sergey
    Tsyganok, Irina
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 208 - 214
  • [39] HOMOGENEOUS RICCI ALMOST SOLITONS
    Calvino-Louzao, Esteban
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    Vazquez-Lorenzo, Ramon
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) : 531 - 546
  • [40] A note on almost Ricci solitons
    Sharief Deshmukh
    Hana Al-Sodais
    Analysis and Mathematical Physics, 2020, 10