RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS

被引:16
|
作者
Barros, A. [1 ]
Batista, R. [1 ]
Ribeiro, E., Jr. [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
D O I
10.1215/ijm/1399395831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that either, a Euclidean space R-n, or a standard sphere S-n, is the unique manifold with nonnegative scalar curvature which carries a structure of a gradient almost Ricci soliton, provided this gradient is a non trivial conformal vector field. Moreover, in the spherical case the field is given by the first eigenfunction of the Laplacian. Finally, we shall show that a compact locally conformally flat almost Ricci soliton is isometric to Euclidean sphere S-n provided an integral condition holds.
引用
收藏
页码:1267 / 1279
页数:13
相关论文
共 50 条