Self-updating Clustering Algorithm for Interval-valued Data

被引:0
|
作者
Hung, Wen-Liang [1 ]
Yang, Jenn-Hwai [2 ]
Shen, Kuan-Fu [3 ]
机构
[1] Natl Hsinchu Univ Educ, Dept Appl Math, Hsinchu, Taiwan
[2] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan
[3] Chien Hsin Univ Sci & Technol, Dept Finance, Taoyuan, Taiwan
关键词
DISTANCES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a robust automatic clustering algorithm based on the Hausdorff distance, called the self-updating clustering algorithm, for interval-valued data. This algorithm can simulate the self-clustering process. At the end of the clustering process, interval-valued data belonging to the same cluster converge to the same position, which represents the cluster's center. The numerical results show the effectiveness of the proposed algorithm using the overall error rate of classification (OERC) and the corrected rand (CR) index as criteria. An example of exoplanet data is also presented.
引用
收藏
页码:1494 / 1500
页数:7
相关论文
共 50 条
  • [1] On the strengths of the self-updating process clustering algorithm
    Shiu, Shang-Ying
    Chen, Ting-Li
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (05) : 1010 - 1031
  • [2] A novel FCM clustering algorithm for interval-valued data and fuzzy-valued data
    Gao, XB
    Ji, HB
    Xie, WX
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 1551 - 1555
  • [3] Symbolic Clustering with Interval-Valued Data
    Sato-Ilic, Mika
    COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [4] A modified self-updating clustering algorithm for application to dengue gene expression data
    Hung, Wen-Liang
    Yang, Jenn-Hwai
    Song, I-Wen
    Chang, Yen-Chang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (02) : 483 - 500
  • [5] Trimmed fuzzy clustering for interval-valued data
    Pierpaolo D’Urso
    Livia De Giovanni
    Riccardo Massari
    Advances in Data Analysis and Classification, 2015, 9 : 21 - 40
  • [6] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [7] Possibilistic Clustering Methods for Interval-Valued Data
    Pimentel, Bruno Almeida
    De Souza, Renata M. C. R.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2014, 22 (02) : 263 - 291
  • [8] Fuzzy clustering of spatial interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    SPATIAL STATISTICS, 2023, 57
  • [9] A fuzzy clustering algorithm for interval-valued data based on Gauss distribution functions
    Lü, Ze-Hua
    Jin, Hai
    Yuan, Ping-Peng
    Zou, De-Qing
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (02): : 295 - 300
  • [10] INCM: neutrosophic c-means clustering algorithm for interval-valued data
    Qiu, Haoye
    Liu, Zhe
    Letchmunan, Sukumar
    GRANULAR COMPUTING, 2024, 9 (02)