Advanced Energy-Efficient Computation Offloading Using Deep Reinforcement Learning in MTC Edge Computing

被引:21
|
作者
Khan, Israr [1 ]
Tao, Xiaofeng [1 ]
Rahman, G. M. Shafiqur [2 ]
Rehman, Waheed Ur [1 ,3 ]
Salam, Tabinda [1 ,4 ]
机构
[1] Beijing Univ Posts & Telecommun, Natl Engn Lab Mobile Network Technol, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[3] Univ Peshawar, Dept Comp Sci, Peshawar 25120, Pakistan
[4] Shaheed Benazir Bhutto Women Univ, Dept Comp Sci, Peshawar 25000, Pakistan
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Machine type communication; mobile edge computing; computation offloading; deep reinforcement learning; energy efficiency; RESOURCE-ALLOCATION; 5G; INTERNET; ARCHITECTURE; CHALLENGES; VEHICLES;
D O I
10.1109/ACCESS.2020.2991057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) supports the internet of things (IoT) by leveraging computation offloading. It minimizes the delay and consequently reduces the energy consumption of the IoT devices. However, the consideration of static communication mode in most of the recent work, despite varying network dynamics and resource diversity, is the main limitation. An energy-efficient computation offloading method using deep reinforcement learning (DRL) is proposed. Both delay-tolerant and non-delay tolerant scenarios are considered using capillary machine type communication (MTC). Depending upon the type of service, an intelligent MTC edge server using DRL decides either process the incoming request at the MTC edge server or sends it to the cloud server. To control communication, we draft a markov decision problem (MDP). This minimizes the long-term power consumption of the system. The formulation of the optimization problem is considered under the constraint of computing power resources and delays. Simulation results delineate the significant performance gain of 12 & x0025; in computation offloading through the proposed DRL approach. The effectiveness and superiority of the proposed model are compared with other baselines and are demonstrated numerically.
引用
收藏
页码:82867 / 82875
页数:9
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing
    Zhou, Huan
    Jiang, Kai
    Liu, Xuxun
    Li, Xiuhua
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (02): : 1517 - 1530
  • [2] Delay-Aware and Energy-Efficient Computation Offloading in Mobile-Edge Computing Using Deep Reinforcement Learning
    Ale, Laha
    Zhang, Ning
    Fang, Xiaojie
    Chen, Xianfu
    Wu, Shaohua
    Li, Longzhuang
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (03) : 881 - 892
  • [3] Energy-Efficient Computation Offloading With DVFS Using Deep Reinforcement Learning for Time-Critical IoT Applications in Edge Computing
    Panda, Saroj Kumar
    Lin, Man
    Zhou, Ti
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 6611 - 6621
  • [4] An Energy-Efficient Dynamic Offloading Algorithm for Edge Computing Based on Deep Reinforcement Learning
    Zhu, Keyu
    Li, Shaobo
    Zhang, Xingxing
    Wang, Jinming
    Xie, Cankun
    Wu, Fengbin
    Xie, Rongxiang
    IEEE ACCESS, 2024, 12 : 127489 - 127506
  • [5] Binary Computation Offloading in Edge Computing Using Deep Reinforcement Learning
    Rajwar, Dipankar
    Kumar, Dinesh
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT II, 2024, 2091 : 215 - 227
  • [6] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322
  • [7] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [8] Federated Deep Reinforcement Learning for Energy-Efficient Edge Computing Offloading and Resource Allocation in Industrial Internet
    Li, Xuehua
    Zhang, Jiuchuan
    Pan, Chunyu
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [9] Energy-Efficient Computation Offloading in Vehicular Edge Cloud Computing
    Li, Xin
    Dang, Yifan
    Aazam, Mohammad
    Peng, Xia
    Chen, Tefang
    Chen, Chunyang
    IEEE ACCESS, 2020, 8 : 37632 - 37644
  • [10] Energy-efficient computation offloading for vehicular edge computing networks
    Gu, Xiaohui
    Zhang, Guoan
    COMPUTER COMMUNICATIONS, 2021, 166 : 244 - 253