Advanced Energy-Efficient Computation Offloading Using Deep Reinforcement Learning in MTC Edge Computing

被引:21
|
作者
Khan, Israr [1 ]
Tao, Xiaofeng [1 ]
Rahman, G. M. Shafiqur [2 ]
Rehman, Waheed Ur [1 ,3 ]
Salam, Tabinda [1 ,4 ]
机构
[1] Beijing Univ Posts & Telecommun, Natl Engn Lab Mobile Network Technol, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
[3] Univ Peshawar, Dept Comp Sci, Peshawar 25120, Pakistan
[4] Shaheed Benazir Bhutto Women Univ, Dept Comp Sci, Peshawar 25000, Pakistan
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Machine type communication; mobile edge computing; computation offloading; deep reinforcement learning; energy efficiency; RESOURCE-ALLOCATION; 5G; INTERNET; ARCHITECTURE; CHALLENGES; VEHICLES;
D O I
10.1109/ACCESS.2020.2991057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile edge computing (MEC) supports the internet of things (IoT) by leveraging computation offloading. It minimizes the delay and consequently reduces the energy consumption of the IoT devices. However, the consideration of static communication mode in most of the recent work, despite varying network dynamics and resource diversity, is the main limitation. An energy-efficient computation offloading method using deep reinforcement learning (DRL) is proposed. Both delay-tolerant and non-delay tolerant scenarios are considered using capillary machine type communication (MTC). Depending upon the type of service, an intelligent MTC edge server using DRL decides either process the incoming request at the MTC edge server or sends it to the cloud server. To control communication, we draft a markov decision problem (MDP). This minimizes the long-term power consumption of the system. The formulation of the optimization problem is considered under the constraint of computing power resources and delays. Simulation results delineate the significant performance gain of 12 & x0025; in computation offloading through the proposed DRL approach. The effectiveness and superiority of the proposed model are compared with other baselines and are demonstrated numerically.
引用
收藏
页码:82867 / 82875
页数:9
相关论文
共 50 条
  • [41] Energy-Efficient Computation Offloading and Transmit Power Allocation Scheme for Mobile Edge Computing
    Gu, Xiaohui
    Jin, Li
    Zhao, Nan
    Zhang, Guoan
    MOBILE INFORMATION SYSTEMS, 2019, 2019
  • [42] Energy-Efficient Secure Computation Offloading in Wireless Powered Mobile Edge Computing Systems
    Wu, Mengru
    Song, Qingyang
    Guo, Lei
    Lee, Inkyu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6907 - 6912
  • [43] Optimal Computation Resource Allocation in Energy-Efficient Edge IoT Systems With Deep Reinforcement Learning
    Ansere, James Adu
    Gyamfi, Eric
    Li, Yijiu
    Shin, Hyundong
    Dobre, Octavia A.
    Hoang, Trang
    Duong, Trung Q.
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (04): : 2130 - 2142
  • [44] Energy-efficient cooperative offloading for mobile edge computing
    Shi, Wenjun
    Wu, Jigang
    Chen, Long
    Zhang, Xinxiang
    Wu, Huaiguang
    WIRELESS NETWORKS, 2023, 29 (06) : 2419 - 2435
  • [45] Energy-efficient Autonomic Offloading in Mobile Edge Computing
    Luo, Changqing
    Salinas, Sergio
    Li, Ming
    Li, Pan
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 581 - 588
  • [46] Energy-efficient cooperative offloading for mobile edge computing
    Wenjun Shi
    Jigang Wu
    Long Chen
    Xinxiang Zhang
    Huaiguang Wu
    Wireless Networks, 2023, 29 : 2419 - 2435
  • [47] Energy-Efficient Collaborative Multi-Access Edge Computing via Deep Reinforcement Learning
    Tan, Lin
    Kuang, Zhufang
    Gao, Jie
    Zhao, Lian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7689 - 7699
  • [48] An Efficient Online Computation Offloading Approach for Large-Scale Mobile Edge Computing via Deep Reinforcement Learning
    Hu, Zheyuan
    Niu, Jianwei
    Ren, Tao
    Dai, Bin
    Li, Qingfeng
    Xu, Mingliang
    Das, Sajal K.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (02) : 669 - 683
  • [49] Computation Offloading in Multi-Access Edge Computing Using a Deep Sequential Model Based on Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Ni, Qiang
    Georgalas, Nektarios
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (05) : 64 - 69
  • [50] Dynamic Computation Offloading with Deep Reinforcement Learning in Edge Network
    Bai, Yang
    Li, Xiaocui
    Wu, Xinfan
    Zhou, Zhangbing
    APPLIED SCIENCES-BASEL, 2023, 13 (03):