Binary Computation Offloading in Edge Computing Using Deep Reinforcement Learning

被引:0
|
作者
Rajwar, Dipankar [1 ]
Kumar, Dinesh [1 ]
机构
[1] Natl Inst Technol Jamshedpur, Jamshedpur 831014, Jharkhand, India
关键词
Edge Computing; Computation Offloading; Deep Reinforcement Learning;
D O I
10.1007/978-3-031-64064-3_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As data-driven applications become increasingly prevalent, traditional cloud computing faces challenges such as latency and operational costs. Edge computing solves these issues by using nearby servers for real-time processing. However, determining the optimal offloading strategy remains complex. This paper investigates a Deep Reinforcement Learning (DRL)-based binary offloading strategy for edge computing in mobile environments. DRL combines reinforcement learning and deep neural networks to adapt to real-time data and diverse environmental conditions. Experimental study demonstrates the effectiveness of the proposed approach over local and remote execution in terms of total overhead and energy consumption.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [1] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [2] Computation offloading Optimization in Edge Computing based on Deep Reinforcement Learning
    Zhu Qinghua
    Chang Ying
    Zhao Jingya
    Liu Yong
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1552 - 1558
  • [3] Deep reinforcement learning for computation offloading in mobile edge computing environment
    Chen, Miaojiang
    Wang, Tian
    Zhang, Shaobo
    Liu, Anfeng
    COMPUTER COMMUNICATIONS, 2021, 175 (175) : 1 - 12
  • [4] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [5] Deep reinforcement learning for the computation offloading in MIMO-based Edge Computing
    Sadiki, Abdeladim
    Bentahar, Jamal
    Dssouli, Rachida
    En-Nouaary, Abdeslam
    Otrok, Hadi
    AD HOC NETWORKS, 2023, 141
  • [6] A Deep Reinforcement Learning Approach for Online Computation Offloading in Mobile Edge Computing
    Zhang, Yameng
    Liu, Tong
    Zhu, Yanmin
    Yang, Yuanyuan
    2020 IEEE/ACM 28TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2020,
  • [7] A Distributed Computation Offloading Strategy for Edge Computing Based on Deep Reinforcement Learning
    Lai, Hongyang
    Yang, Zhuocheng
    Li, Jinhao
    Wu, Celimuge
    Bao, Wugedele
    MOBILE NETWORKS AND MANAGEMENT, MONAMI 2021, 2022, 418 : 73 - 86
  • [8] A Deep Reinforcement Learning Approach Towards Computation Offloading for Mobile Edge Computing
    Wang, Qing
    Tan, Wenan
    Qin, Xiaofan
    HUMAN CENTERED COMPUTING, 2019, 11956 : 419 - 430
  • [9] Computation Offloading and Trajectory Control for UAV-Assisted Edge Computing Using Deep Reinforcement Learning
    Qi, Huamei
    Zhou, Zheng
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [10] Advanced Energy-Efficient Computation Offloading Using Deep Reinforcement Learning in MTC Edge Computing
    Khan, Israr
    Tao, Xiaofeng
    Rahman, G. M. Shafiqur
    Rehman, Waheed Ur
    Salam, Tabinda
    IEEE ACCESS, 2020, 8 (82867-82875) : 82867 - 82875