Manipulation of mitochondrial genes and mtDNA heteroplasmy

被引:20
|
作者
Bacman, Sandra R. [1 ]
Gammage, P. A. [2 ]
Minczuk, M. [3 ]
Moraes, Carlos T. [1 ]
机构
[1] Univ Miami, Sch Med, Dept Neurol, Miami, FL 33136 USA
[2] CRUK Beatson Inst Canc Res, Glasgow, Lanark, Scotland
[3] Univ Cambridge, MRC Mitochondrial Biol Unit, Cambridge, England
来源
MITOCHONDRIA, 3RD EDITION | 2020年 / 155卷
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
ZINC-FINGER-NUCLEASE; CRYSTAL-STRUCTURE; DNA HETEROPLASMY; MOUSE MODEL; SELECTIVE ELIMINATION; RESTRICTION ENZYMES; BINDING SITES; TAL EFFECTORS; VIRAL VECTORS; MUTANT MTDNA;
D O I
10.1016/bs.mcb.2019.12.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Most patients with mitochondrial DNA (mtDNA) mutations have a mixture of mutant and wild-type mtDNA in their cells. This phenomenon, known as mtDNA heteroplasmy, provides an opportunity to develop therapies by selectively eliminating the mutant fraction. In the last decade, several enzyme-based gene editing platforms were developed to cleave specific DNA sequences. We have taken advantage of these enzymes to develop reagents to selectively eliminate mutant mtDNA. The replication of intact mitochondrial genomes normalizes mtDNA levels and consequently mitochondrial function. In this chapter, we describe the methodology used to design and express these nucleases in mammalian cells in culture and in vivo.
引用
收藏
页码:441 / 487
页数:47
相关论文
共 50 条
  • [41] Paternal leakage and mtDNA heteroplasmy in Rhipicephalus spp. ticks
    Valentina Mastrantonio
    Maria Stefania Latrofa
    Daniele Porretta
    Riccardo Paolo Lia
    Antonio Parisi
    Roberta Iatta
    Filipe Dantas-Torres
    Domenico Otranto
    Sandra Urbanelli
    Scientific Reports, 9
  • [42] MtDNA substitution rate and segregation of heteroplasmy in coding and noncoding regions
    Cavelier, L
    Jazin, E
    Jalonen, P
    Gyllensten, U
    HUMAN GENETICS, 2000, 107 (01) : 45 - 50
  • [43] Nuclear genetic control of mtDNA copy number and heteroplasmy in humans
    Gupta, Rahul
    Kanai, Masahiro
    Durham, Timothy J.
    Tsuo, Kristin
    McCoy, Jason G.
    Kotrys, Anna V.
    Zhou, Wei
    Chinnery, Patrick F.
    Karczewski, Konrad J.
    Calvo, Sarah E.
    Neale, Benjamin M.
    Mootha, Vamsi K.
    NATURE, 2023, 620 (7975) : 839 - 848
  • [44] ORIGINAL MARKERS OF ATHEROSCLEROSIS: THRESHOLD LEVELS OF HETEROPLASMY MUTATIONS MTDNA
    Sazonova, M. A.
    Ryzhkova, A. I.
    Sinyov, V. V.
    Sazonova, M. D.
    Kirichenko, T. V.
    Doroschuk, N. A.
    Karagodin, V. P.
    Orekhov, A. N.
    Sobenin, I. A.
    ATHEROSCLEROSIS, 2020, 315 : E111 - E111
  • [45] Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus)
    Ludwig, A
    May, B
    Debus, L
    Jenneckens, I
    GENETICS, 2000, 156 (04) : 1933 - 1947
  • [46] Genome evolution: Minicircular mtDNA and unusual heteroplasmy in a parasitic plant
    Smith, David Roy
    CURRENT BIOLOGY, 2022, 32 (02) : R86 - R89
  • [47] MtDNA substitution rate and segregation of heteroplasmy in coding and noncoding regions
    Cavelier L.
    Jazin E.
    Jalonen P.
    Gyllensten U.
    Human Genetics, 2000, 107 (1) : 45 - 50
  • [48] A PCR test for mitochondrial heteroplasmy in sturgeon
    Ludwig, A
    Jenneckens, I
    ANIMAL GENETICS, 2000, 31 (02) : 153 - 154
  • [49] Heterogeneity in m.3243A&gtG-related mitochondrial disease: The role of mtDNA heteroplasmy, copy number, age and nuclear factors
    Pickett, S. J.
    Grady, J. P.
    Ng, Y. Shiau
    Alston, C. L.
    Blakely, E.
    Hardy, S. A.
    Feeney, C. L.
    Bright, A. A.
    Schaefer, A. M.
    McNally, R. J. Q.
    Wilson, I. J.
    Cordell, H. J.
    Gorman, G. S.
    Taylor, R. W.
    Turnbull, D. M.
    McFarland, R.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 180 - 180
  • [50] Detection of heteroplasmy in individual mitochondrial particles
    Poe, Bobby G., III
    Duffy, Ciaran F.
    Greminger, Michael A.
    Nelson, Bradley J.
    Arriaga, Edgar A.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (08) : 3397 - 3407