Manipulation of mitochondrial genes and mtDNA heteroplasmy

被引:20
|
作者
Bacman, Sandra R. [1 ]
Gammage, P. A. [2 ]
Minczuk, M. [3 ]
Moraes, Carlos T. [1 ]
机构
[1] Univ Miami, Sch Med, Dept Neurol, Miami, FL 33136 USA
[2] CRUK Beatson Inst Canc Res, Glasgow, Lanark, Scotland
[3] Univ Cambridge, MRC Mitochondrial Biol Unit, Cambridge, England
来源
MITOCHONDRIA, 3RD EDITION | 2020年 / 155卷
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
ZINC-FINGER-NUCLEASE; CRYSTAL-STRUCTURE; DNA HETEROPLASMY; MOUSE MODEL; SELECTIVE ELIMINATION; RESTRICTION ENZYMES; BINDING SITES; TAL EFFECTORS; VIRAL VECTORS; MUTANT MTDNA;
D O I
10.1016/bs.mcb.2019.12.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Most patients with mitochondrial DNA (mtDNA) mutations have a mixture of mutant and wild-type mtDNA in their cells. This phenomenon, known as mtDNA heteroplasmy, provides an opportunity to develop therapies by selectively eliminating the mutant fraction. In the last decade, several enzyme-based gene editing platforms were developed to cleave specific DNA sequences. We have taken advantage of these enzymes to develop reagents to selectively eliminate mutant mtDNA. The replication of intact mitochondrial genomes normalizes mtDNA levels and consequently mitochondrial function. In this chapter, we describe the methodology used to design and express these nucleases in mammalian cells in culture and in vivo.
引用
收藏
页码:441 / 487
页数:47
相关论文
共 50 条
  • [21] Heteroplasmy in action: tracking mtDNA segregation dynamics
    Dua, Nitish
    Badrinarayanan, Anjana
    EMBO JOURNAL, 2024, 43 (22): : 5329 - 5331
  • [22] Schizophrenia: Maternal inheritance and heteroplasmy of mtDNA mutations
    Ichikawa, Tomoe
    Arai, Makoto
    Miyashita, Mitsuhiro
    Arai, Mayumi
    Obata, Nanako
    Nohara, Izumi
    Oshima, Kenichi
    Niizato, Kazuhiro
    Okazaki, Yuji
    Doi, Nagafumi
    Itokawa, Masanari
    MOLECULAR GENETICS AND METABOLISM, 2012, 105 (01) : 103 - 109
  • [23] mtDNA Heteroplasmy in Monozygotic Twins Discordant for Schizophrenia
    Li, Hong
    Bi, Rui
    Fan, Yu
    Wu, Yong
    Tang, Yanqing
    Li, Zongchang
    He, Ying
    Zhou, Jun
    Tang, Jinsong
    Chen, Xiaogang
    Yao, Yong-Gang
    MOLECULAR NEUROBIOLOGY, 2017, 54 (06) : 4343 - 4352
  • [24] Converting a Problem into an Opportunity: mtDNA Heteroplasmy Shift
    Diez-Juan, Antonio
    Simon, Carlos
    CELL STEM CELL, 2015, 16 (05) : 457 - 458
  • [25] Organization of mtDNA heteroplasmy examined by in situ hybridization
    Gilkerson, R
    Davidson, M
    Schon, E
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1657 : 100 - 100
  • [26] Regulation of Mother-to-Offspring Transmission of mtDNA Heteroplasmy
    Latorre-Pellicer, Ana
    Victoria Lechuga-Vieco, Ana
    Johnston, Iain G.
    Hamalainen, Riikka H.
    Pellico, Juan
    Justo-Mendez, Raquel
    Maria Fernandez-Toro, Jose
    Claveria, Cristina
    Guaras, Adela
    Sierra, Rocio
    Llop, Jordi
    Torres, Miguel
    Miguel Criado, Luis
    Suomalainen, Anu
    Jones, Nick S.
    Ruiz-Cabello, Jesus
    Antonio Enriquez, Jose
    CELL METABOLISM, 2019, 30 (06) : 1120 - +
  • [27] A Twin Study of Mitochondrial DNA Polymorphisms Shows that Heteroplasmy at Multiple Sites Is Associated with mtDNA Variant 16093 but Not with Zygosity
    Andrew, Toby
    Calloway, Cassandra D.
    Stuart, Sarah
    Lee, Sang Hoon
    Gill, Raj
    Clement, Gail
    Chowienczyk, Philip
    Spector, Tim D.
    Valdes, Ana M.
    PLOS ONE, 2011, 6 (08):
  • [28] Telomere length and mtDNA heteroplasmy in different age groups
    Ranka, R.
    Pliss, L.
    Zole, E.
    Aitullina, A.
    Gustina, A.
    Krumina, A.
    Baumanis, V.
    FEBS JOURNAL, 2011, 278 : 248 - 248
  • [29] Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans
    Valenci, Itay
    Yonai, Lital
    Bar-Yaacov, Dan
    Mishmar, Dan
    Ben-Zvi, Anat
    MITOCHONDRION, 2015, 20 : 64 - 70
  • [30] mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences
    Parakatselaki, Maria-Eleni
    Ladoukakis, Emmanuel D.
    LIFE-BASEL, 2021, 11 (07):