A Fast Blockchain-Based Federated Learning Framework With Compressed Communications

被引:16
|
作者
Cui, Laizhong [1 ]
Su, Xiaoxin [1 ]
Zhou, Yipeng [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Macquarie Univ, Sch Comp, FSE, Macquarie Pk, NSW 2113, Australia
基金
中国国家自然科学基金;
关键词
Federated learning; blockchain; compression; convergence; OPTIMIZATION; DESIGN;
D O I
10.1109/JSAC.2022.3213345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, blockchain-based federated learning (BFL) has attracted intensive research attention due to that the training process is auditable and the architecture is serverless avoiding the single point failure of the parameter server in vanilla federated learning (VFL). Nevertheless, BFL tremendously escalates the communication traffic volume because all local model updates (i.e., changes of model parameters) obtained by BFL clients will be transmitted to all miners for verification and to all clients for aggregation. In contrast, the parameter server and clients in VFL only retain aggregated model updates. Consequently, the huge communication traffic in BFL win inevitably impair the training efficiency and hinder the deployment of BFL in reality. To improve the practicality of BFL, we are among the first to propose a fast blockchain-based communication-efficient federated learning framework by compressing communications in BFL, called BCFL. Meanwhile, we derive the convergence rate of BCFL with non-convex loss. To maximize the final model accuracy, we further formulate the problem to minimize the training loss of the convergence rate subject to a limited training time with respect to the compression rate and the block generation rate, which is a bi-convex optimization problem and can be efficiently solved. To the end, to demonstrate the efficiency of BCFL, we carry out extensive experiments with standard CIFAR-10 and FEMNIST datasets. Our experimental results not only verify the correctness of our analysis, but also manifest that BCFL can remarkably reduce the communication traffic by 95-98% or shorten the training time by 90-95% compared with BFL.
引用
收藏
页码:3358 / 3372
页数:15
相关论文
共 50 条
  • [41] Blockchain-based federated learning methodologies in smart environments
    Li, Dong
    Luo, Zai
    Cao, Bo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (04): : 2585 - 2599
  • [42] The Design of Reputation System for Blockchain-based Federated Learning
    Chen, Xinyan
    Wang, Taotao
    Zhang, Shengli
    2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BLOCKCHAIN TECHNOLOGY (AIBT 2021), 2021, : 114 - 120
  • [43] Deep Reinforcement Learning for Resource Allocation in Blockchain-based Federated Learning
    Dai, Yueyue
    Yang, Huijiong
    Yang, Huiran
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 179 - 184
  • [44] Blockchain-Based Swarm Learning for the Mitigation of Gradient Leakage in Federated Learning
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    IEEE ACCESS, 2023, 11 : 16549 - 16556
  • [45] InFEDge: A Blockchain-Based Incentive Mechanism in Hierarchical Federated Learning for End-Edge-Cloud Communications
    Wang, Xiaofei
    Zhao, Yunfeng
    Qiu, Chao
    Liu, Zhicheng
    Nie, Jiangtian
    Leung, Victor C. M.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (12) : 3325 - 3342
  • [46] Federated Learning and Blockchain-Based Collaborative Framework for Real-Time Wild Life Monitoring
    Jagannathan, Preetha
    Saravanan, Kalaivanan
    Deepajothi, Subramaniyam
    Vadivel, Sharmila
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2025, 25 (01) : 19 - 35
  • [47] An improved blockchain-based multi-region Federated Learning framework for crop disease diagnosis
    Qin, Yuanze
    Xu, Chang
    Zhou, Qin
    Zhang, Lingxian
    Zhang, Yiding
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [48] A blockchain-based audit approach for encrypted data in federated learning
    Zhe Sun
    Junping Wan
    Lihua Yin
    Zhiqiang Cao
    Tianjie Luo
    Bin Wang
    Digital Communications and Networks, 2022, 8 (05) : 614 - 624
  • [49] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [50] Incentive Mechanism of Blockchain-Based Reverse Auction for Federated Learning
    Cui, Bo
    Dang, Li
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1043 - 1048