A Fast Blockchain-Based Federated Learning Framework With Compressed Communications

被引:16
|
作者
Cui, Laizhong [1 ]
Su, Xiaoxin [1 ]
Zhou, Yipeng [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Macquarie Univ, Sch Comp, FSE, Macquarie Pk, NSW 2113, Australia
基金
中国国家自然科学基金;
关键词
Federated learning; blockchain; compression; convergence; OPTIMIZATION; DESIGN;
D O I
10.1109/JSAC.2022.3213345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, blockchain-based federated learning (BFL) has attracted intensive research attention due to that the training process is auditable and the architecture is serverless avoiding the single point failure of the parameter server in vanilla federated learning (VFL). Nevertheless, BFL tremendously escalates the communication traffic volume because all local model updates (i.e., changes of model parameters) obtained by BFL clients will be transmitted to all miners for verification and to all clients for aggregation. In contrast, the parameter server and clients in VFL only retain aggregated model updates. Consequently, the huge communication traffic in BFL win inevitably impair the training efficiency and hinder the deployment of BFL in reality. To improve the practicality of BFL, we are among the first to propose a fast blockchain-based communication-efficient federated learning framework by compressing communications in BFL, called BCFL. Meanwhile, we derive the convergence rate of BCFL with non-convex loss. To maximize the final model accuracy, we further formulate the problem to minimize the training loss of the convergence rate subject to a limited training time with respect to the compression rate and the block generation rate, which is a bi-convex optimization problem and can be efficiently solved. To the end, to demonstrate the efficiency of BCFL, we carry out extensive experiments with standard CIFAR-10 and FEMNIST datasets. Our experimental results not only verify the correctness of our analysis, but also manifest that BCFL can remarkably reduce the communication traffic by 95-98% or shorten the training time by 90-95% compared with BFL.
引用
收藏
页码:3358 / 3372
页数:15
相关论文
共 50 条
  • [31] A Blockchain-Based Reliable Federated Meta-Learning for Metaverse: A Dual Game Framework
    Baccour, Emna
    Erbad, Aiman
    Mohamed, Amr
    Hamdi, Mounir
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22697 - 22715
  • [32] Federated learning with blockchain-based model aggregation and incentives
    Cherukuri R.V.
    Lavanya Devi G.
    Ramesh N.
    International Journal of Computers and Applications, 2024, 46 (06) : 407 - 417
  • [33] A Survey on Blockchain-Based Federated Learning and Data Privacy
    Chhetri, Bipin
    Gopali, Saroj
    Olapojoye, Rukayat
    Dehbashi, Samin
    Namin, Akhar Siami
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1311 - 1318
  • [34] BDVFL: Blockchain-based Decentralized Vertical Federated Learning
    Wang, Shuo
    Gai, Keke
    Yu, Jing
    Zhu, Liehuang
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 628 - 637
  • [35] Blockchain-based federated learning methodologies in smart environments
    Dong Li
    Zai Luo
    Bo Cao
    Cluster Computing, 2022, 25 : 2585 - 2599
  • [36] Blockchain-Based Federated Learning for Data Privacy and Security
    Murugan, G.
    Divyashree, D.
    Ravisankar, P.
    Vasudevan, M.
    Karthikeyan, T.
    Singh, Devesh Pratap
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [37] Time-Efficient Blockchain-Based Federated Learning
    Lin, Rongping
    Wang, Fan
    Luo, Shan
    Wang, Xiong
    Zukerman, Moshe
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (06) : 4885 - 4900
  • [38] A Blockchain-Based Federated Learning Method for Smart Healthcare
    Chang, Yuxia
    Fang, Chen
    Sun, Wenzhuo
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [39] Blockchain-based Secure Client Selection in Federated Learning
    Nguyen, Truc
    Thai, Phuc
    Jeter, Tre R.
    Dinht, Thang N.
    Thai, My T.
    2022 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (IEEE ICBC 2022), 2022,
  • [40] ScaleSFL: A Sharding Solution for Blockchain-Based Federated Learning
    Madill, Evan
    Nguyen, Ben
    Leung, Carson K.
    Rouhani, Sara
    BSCI'22: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL SYMPOSIUM ON BLOCKCHAIN AND SECURE CRITICAL INFRASTRUCTURE, 2022, : 95 - 106