Mechanistic Insight into the CO2 Capture by Amidophosphoranes: Interplay of the Ring Strain and the trans Influence Determines the Reactivity of the Frustrated Lewis Pairs

被引:31
|
作者
Zhu, Jun [1 ,2 ]
An, Ke [1 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Fujian Prov Key Lab Theoret & Computat Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
[2] Peking Univ, Shenzhen Grad Sch, Lab Chem Genom, Lab Computat Chem & Drug Design, Shenzhen 518055, Peoples R China
关键词
amidophosphoranes; carbon dioxide; density functional calculations; frustrated Lewis pairs; reaction mechanisms; CARBON-DIOXIDE; HOMOGENEOUS HYDROGENATION; DENSITY FUNCTIONALS; METHANOL; ACID; ACTIVATION; FRAMEWORKS; REDUCTION; FORMATES;
D O I
10.1002/asia.201300864
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 capture has attracted increasing attention owing to its contribution to global warming and climate change as a greenhouse gas. As an alternative strategy to transition-metal-based chemistry and catalysis, frustrated Lewis pairs have been developed to sequester CO2 efficiently under mild conditions. However, the mechanism of CO2 sequestration with amidophosphoranes remains unclear. Herein, we present a thorough density functional theory study on a series of amidophosphoranes. Our results reveal that the interplay of the ring strain and the trans influence determines the reactivities, thus opening a new avenue to the design of frustrated Lewis pairs for CO2 capture.
引用
收藏
页码:3147 / 3151
页数:5
相关论文
共 50 条
  • [31] Exploring N2 activation using novel Lewis acid/base pairs: computational insight into frustrated Lewis pair reactivity
    Gastearena, Xuban
    Matxain, Jon M.
    Ruiperez, Fernando
    DALTON TRANSACTIONS, 2025, 54 (10) : 4338 - 4352
  • [32] Stoichiometric Reduction of CO2 to CO by Phosphine/AIX3-Based Frustrated Lewis Pairs
    Menard, Gabriel
    Gilbert, Thomas M.
    Hatnean, Jillian A.
    Kraft, Anne
    Krossing, Ingo
    Stephan, Douglas W.
    ORGANOMETALLICS, 2013, 32 (15) : 4416 - 4422
  • [33] Hydrogenation activity of Lewis acid-base pairs: A new theoretical model to understand the degradation of CO/CO2 catalyzed by Frustrated Lewis pairs
    Liu, Zhengwu
    Zhang, Yuan
    Wang, Kun
    Cheng, Longjiu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 86 : 1129 - 1139
  • [34] The superiority of non-frustrated over frustrated Lewis pairs in the copper-catalyzed hydrogenation of CO2 to formate
    Luo, Huaxun
    Zhu, Boyu
    Liu, Xiaomin
    Zhang, Xiaomin
    Zhao, Tianxiang
    Hu, Xingbang
    MOLECULAR CATALYSIS, 2023, 546
  • [35] Periodic Frustrated Lewis Pairs on Bimetallic Oxide Semiconductors for CO2 Adsorption and Photocatalytic Conversion
    Yu, Linqun
    Wang, Qiushi
    Zhuang, Chunqiang
    Huang, Jin-Dou
    Zhu, Yongan
    Jing, Xuedong
    Guo, Yuhang
    Tong, Ye-Xiang
    Zhang, Zhenyi
    ACS NANO, 2025, 19 (07) : 7239 - 7252
  • [36] Boron based intramolecular heterocyclic frustrated Lewis pairs as organocatalysts for CO2 adsorption and activation
    Faizan, Mohmmad
    Pawar, Ravinder
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (22) : 1474 - 1483
  • [37] Regulation of frustrated Lewis pairs on CeO2 facilitates tandem transformation of styrene and CO2
    Zou, Yong
    Xia, Zhaoming
    Wang, You
    Liu, Yuxuan
    Zhang, Sai
    Qu, Yongquan
    CHEMICAL COMMUNICATIONS, 2023, 59 (79) : 11855 - 11858
  • [38] A kinetic study on the reduction of CO2 by frustrated Lewis pairs: from understanding to rational design
    Liu, Lei
    Vankova, Nina
    Heine, Thomas
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (05) : 3567 - 3574
  • [39] Reducing CO2 to Methanol Using Frustrated Lewis Pairs: On the Mechanism of Phosphine-Borane-Mediated Hydroboration of CO2
    Courtemanche, Marc-Andre
    Legare, Marc-Andre
    Maron, Laurent
    Fontaine, Frederic-Georges
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (30) : 10708 - 10717
  • [40] Coupling mechanism of N2 and CO2 to urea over artificial frustrated Lewis pairs
    Chu, Shasha
    Su, Xintai
    CHEM CATALYSIS, 2022, 2 (02): : 223 - 225