A kinetic study on the reduction of CO2 by frustrated Lewis pairs: from understanding to rational design

被引:38
|
作者
Liu, Lei [1 ]
Vankova, Nina [1 ]
Heine, Thomas [1 ]
机构
[1] Jacobs Univ Bremen, Dept Phys & Earth Sci, Campus Ring 1, D-28759 Bremen, Germany
关键词
N-HETEROCYCLIC CARBENE; SET MODEL CHEMISTRY; CARBON-DIOXIDE; H-2; ACTIVATION; TOTAL ENERGIES; METHANOL; REACTIVITY; CONVERSION; MECHANISM; ATOMS;
D O I
10.1039/c5cp06925d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dioxide (CO2) is known as one of the major reasons for global warming. On the other hand, CO2 is considered as an abundant carbon source. Therefore, transformation of CO2 into target chemicals nowadays is of great interest. Recently, a concept of so-called "frustrated Lewis pairs'' (FLPs) has been proposed. Such FLPs show unusual reactivity, such as hydrogen activation and the reduction of CO2. In this study, by means of density functional theory (DFT) and ab initio calculations, we conduct a kinetic survey on the reduction of CO2 by a series of FLPs. We investigate the relationship between the electronic structures and kinetic properties. The kinetic properties include: (1) reaction energy barriers, (2) the structural properties of the associated transition states (TSs), and (3) the natural charge population in these TSs. Our results indicate that there is a systematic relationship between the electronic structures and the kinetic properties, and, as a rule of thumb, similar activation barriers for both individual reactions are needed for best performance. The derived relationship can be used not only to rationalize the published experimental results, but also to assist the future design of more efficient Lewis acid-base pairs as metal-free catalysts for the reduction of CO2.
引用
收藏
页码:3567 / 3574
页数:8
相关论文
共 50 条
  • [1] Advances in "frustrated Lewis pairs" hydrogenations and CO2 reduction
    Stephan, Douglas W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [2] Inorganic Frustrated Lewis Pairs in Photocatalytic CO2 Reduction
    Li, Taozhu
    Zhang, Weining
    Qin, Hao
    Lu, Lei
    Yan, Shicheng
    Zou, Zhigang
    CHEMPHOTOCHEM, 2021, 5 (06): : 495 - 501
  • [3] Stoichiometric Reduction of CO2 to CO by Aluminum-Based Frustrated Lewis Pairs
    Menard, Gabriel
    Stephan, Douglas W.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (36) : 8396 - 8399
  • [4] Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO2 Reduction
    Ghuman, Kulbir Kaur
    Hoch, Laura B.
    Szymanski, Paul
    Loh, Joel Y. Y.
    Kherani, Nazir P.
    E-Sayed, Mostafa A.
    Ozin, Geoffrey A.
    Singh, Chandra Veer
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) : 1206 - 1214
  • [5] Roles of the Lewis acid and base in the chemical reduction of CO2 catalyzed by frustrated Lewis pairs
    Lim, Chern-Hooi
    Holder, Aaron M.
    Hynes, James T.
    Musgrave, Charles B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [6] Roles of the Lewis Acid and Base in the Chemical Reduction of CO2 Catalyzed by Frustrated Lewis Pairs
    Lim, Chern-Hooi
    Holder, Aaron M.
    Hynes, James T.
    Musgrave, Charles B.
    INORGANIC CHEMISTRY, 2013, 52 (17) : 10062 - 10066
  • [7] Kinetic and thermodynamic study of the catalytic reduction of olefins by frustrated Lewis pairs
    Autrey, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [8] Implications of CO2 Activation by Frustrated Lewis Pairs in the Catalytic Hydroboration of CO2: A View Using N/Si+ Frustrated Lewis Pairs
    von Wolff, N.
    Lefevre, G.
    Berthet, J. -C.
    Thuery, P.
    Cantat, T.
    ACS CATALYSIS, 2016, 6 (07): : 4526 - 4535
  • [9] Microfluidic Studies of CO2 Sequestration by Frustrated Lewis Pairs
    Voicu, Dan
    Abolhasani, Milad
    Choueiri, Rachelle
    Lestari, Gabriella
    Seiler, Caroline
    Menard, Gabriel
    Greener, Jesse
    Guenther, Axel
    Stephan, Douglas W.
    Kumacheva, Eugenia
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (10) : 3875 - 3880
  • [10] Stoichiometric Reduction of CO2 to CO by Phosphine/AIX3-Based Frustrated Lewis Pairs
    Menard, Gabriel
    Gilbert, Thomas M.
    Hatnean, Jillian A.
    Kraft, Anne
    Krossing, Ingo
    Stephan, Douglas W.
    ORGANOMETALLICS, 2013, 32 (15) : 4416 - 4422