A Note on the Browder's and Weyl's Theorem

被引:6
|
作者
Amouch, M. [1 ]
Zguitti, H. [2 ]
机构
[1] Fac Sci Semlalia, Dept Math, Marrakech, Morocco
[2] Fac Sci Rabat, Dept Math, Rabat, Morocco
关键词
Weyl's theorem; generalized Weyl's theorem; Browder's theorem; generalized Browder's theorem; single-valued extension property;
D O I
10.1007/s10114-008-6633-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a Banach space operator, E(T) be the set of all isolated eigenvalues of T and pi(T) be the set of all poles of T. In this work, we show that Browder's theorem for T is equivalent to the localized single-valued extension property at all complex numbers lambda in the complement of the Weyl spectrum of T, and we give some characterization of Weyl's theorem for operator satisfying E(T) = pi(T). An application is also given.
引用
收藏
页码:2015 / 2020
页数:6
相关论文
共 50 条
  • [21] Weyl's and Browder's theorems for operators satisfying the SVEP
    Oudghiri, M
    STUDIA MATHEMATICA, 2004, 163 (01) : 85 - 101
  • [22] A Note on Koliha-Drazin Invertible Operators and a-Browder's Theorem
    Cvetkovic, Milos D.
    Zivkovic-Zlatanovic, Snezana C.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [23] A Note on Koliha-Drazin Invertible Operators and a-Browder’s Theorem
    Miloš D. Cvetković
    Snežana Č. Živković-Zlatanović
    Complex Analysis and Operator Theory, 2021, 15
  • [24] Generalized Browder’s Theorem and SVEP
    Pietro Aiena
    Orlando Garcia
    Mediterranean Journal of Mathematics, 2007, 4 : 215 - 228
  • [25] Generalized Browder's theorem and SVEP
    Aiena, Pietro
    Garcia, Orlando
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2007, 4 (02) : 215 - 228
  • [26] On generalized a-Browder's theorem
    Aiena, Pietro
    Miller, T. Len
    STUDIA MATHEMATICA, 2007, 180 (03) : 285 - 300
  • [27] A New Characterization of Browder's Theorem
    Karmouni, Mohammed
    Tajmouati, Abdelaziz
    FILOMAT, 2018, 32 (14) : 4865 - 4873
  • [28] Browder's Theorem through Brouwer's Fixed Point Theorem
    Solan, Eilon
    Solan, Omri N. N.
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (04): : 370 - 374
  • [29] Weyl spectra and Weyl's theorem
    Han, YM
    Lee, WY
    STUDIA MATHEMATICA, 2001, 148 (03) : 193 - 206
  • [30] Weyl spectra and Weyl's theorem
    Cao, XH
    Guo, MZ
    Meng, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) : 758 - 767