Browder's Theorem through Brouwer's Fixed Point Theorem

被引:2
|
作者
Solan, Eilon [1 ]
Solan, Omri N. N. [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-6997800 Tel Aviv, Israel
来源
AMERICAN MATHEMATICAL MONTHLY | 2023年 / 130卷 / 04期
基金
以色列科学基金会;
关键词
55M20;
D O I
10.1080/00029890.2022.2160170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A parametric version of Brouwer's fixed point theorem, called Browder's theorem, states that for every continuous mapping f:[0,1]xX & RARR;X , where X is a nonempty, compact, and convex set in a Euclidean space, the set of fixed points of f, namely, the set {(t,x)& ISIN;[0,1]xX:f(t,x)=x} , has a connected component whose projection onto the first coordinate is [0,1] . Browder's original proof relies on the theory of the fixed point index. We provide an alternative proof that uses Brouwer's fixed point theorem and is valid whenever X is a nonempty, compact, and convex subset of a Hausdorff topological vector space.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 50 条