The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion

被引:141
|
作者
Deng, Pu [1 ]
Karadge, Mallikarjun [2 ]
Rebak, Raul B. [2 ]
Gupta, Vipul K. [2 ]
Prorok, Barton C. [1 ]
Lou, Xiaoyuan [1 ]
机构
[1] Auburn Univ, Auburn, AL 36849 USA
[2] GE Res, Niskayuna, NY 12309 USA
关键词
Austenitic stainless steel; Additive manufacturing; Laser powder bed fusion; Oxide inclusions; Powder spattering; Moisture contamination; Melt pool oxidation; Hardness; GAMMA-TIAL ALLOY; OXIDE INCLUSIONS; CREEP-PROPERTIES; FERRITIC STEEL; SPATTER; MICROSTRUCTURE; EVOLUTION; BEHAVIOR; SOLIDIFICATION; PRECIPITATION;
D O I
10.1016/j.addma.2020.101334
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The origins of nano-scale oxide inclusions in 316L austenitic stainless steel (SS) manufactured by laser powder bed fusion (L-PBF) was investigated by quantifying the possible intrusion pathways of oxygen contained in the precursor powder, extraneous oxygen from the process environment during laser processing, and moisture contamination during powder handling and storage. When processing the fresh, as-received powder in a well-controlled environment, the oxide inclusions contained in the precursor powder were the primary contributors to the formation of nano-scale oxides in the final additive manufactured (AM) product. These oxide inclusions were found to be enriched with oxygen getter elements like Si and Mn. By controlling the extraneous oxygen level in the process environment, the oxygen level in AM produced parts was found to increase with the extraneous oxygen level. The intrusion pathway of this extra oxygen was found to be dominated by the incorporation of spatter particles into the build during processing. Moisture induced oxidation during powder storage was also found to result in a higher oxide density in the AM produced parts. SS 316L powder free of Si and Mn oxygen getters was processed in a well-controlled environment and resulted in a similar level of oxygen intrusion. Microhardness testing indicated that the oxide volume fraction increase from extraneous oxygen did not influence hardness values. However, a marked decrease in hardness was found for the humidified and Si-Mn free AM processed parts.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Oxidation behavior at 900°C of austenitic, ferritic, and duplex stainless steels manufactured by powder metallurgy
    Bautista, A
    Velasco, F
    Campos, M
    Rabanal, ME
    Torralba, JM
    OXIDATION OF METALS, 2003, 59 (3-4): : 373 - 393
  • [42] Influence of the surface state on the corrosion behavior of the 316 L stainless steel manufactured by laser powder bed fusion
    Bedmar, J.
    Abu-warda, N.
    García-Rodríguez, S.
    Torres, B.
    Rams, J.
    Corrosion Science, 2022, 207
  • [43] Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Krakhmalev, Pavel
    Fredriksson, Gunnel
    Svensson, Krister
    Yadroitsev, Igor
    Yadroitsava, Ina
    Thuvander, Mattias
    Peng, Ru
    METALS, 2018, 8 (08):
  • [44] Effect of heat treatment on creep behavior of 316 L stainless steel manufactured by laser powder bed fusion
    Li, Meimei
    Chen, Wei-Ying
    Zhang, Xuan
    JOURNAL OF NUCLEAR MATERIALS, 2022, 559
  • [45] Microstructure simulation and experimental evaluation of the anisotropy of 316 L stainless steel manufactured by laser powder bed fusion
    Omar Barrionuevo, German
    Andres Ramos-Grez, Jorge
    Walczak, Magdalena
    Sanchez-Sanchez, Xavier
    Guerra, Carolina
    Debut, Alexis
    Haro, Edison
    RAPID PROTOTYPING JOURNAL, 2023, 29 (03) : 425 - 436
  • [46] On the effect of rapid annealing on the microstructure and mechanical behavior of additively manufactured stainless steel by Laser Powder Bed Fusion
    Jandaghi, Mohammad Reza
    Saboori, Abdollah
    Iuliano, Luca
    Pavese, Matteo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 828
  • [47] Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion
    Calderon, L. A. Avila
    Rehmer, B.
    Schriever, S.
    Ulbricht, A.
    Jacome, L. Agudo
    Sommer, K.
    Mohr, G.
    Skrotzki, B.
    Evans, A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830
  • [48] On the thermal coarsening and transformation of nanoscale oxide inclusions in 316L stainless steel manufactured by laser powder bed fusion and its influence on impact toughness
    Deng, Pu
    Song, Miao
    Yang, Jingfan
    Pan, Qingyu
    McAllister, Sarah
    Li, Lin
    Prorok, Barton C.
    Lou, Xiaoyuan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 835
  • [49] Laser Powder Bed Fusion of Stainless Steel Grades: A Review
    Zitelli, Chiara
    Folgarait, Paolo
    Di Schino, Andrea
    METALS, 2019, 9 (07)
  • [50] INFLUENCE OF MnS INCLUSIONS ON THE CORROSION OF AUSTENITIC STAINLESS STEELS
    Donik, Crtomir
    Paulin, Irena
    Jenko, Monika
    MATERIALI IN TEHNOLOGIJE, 2010, 44 (02): : 67 - 72