On the thermal coarsening and transformation of nanoscale oxide inclusions in 316L stainless steel manufactured by laser powder bed fusion and its influence on impact toughness

被引:43
|
作者
Deng, Pu [1 ]
Song, Miao [2 ]
Yang, Jingfan [1 ]
Pan, Qingyu [1 ]
McAllister, Sarah [3 ]
Li, Lin [3 ]
Prorok, Barton C. [1 ]
Lou, Xiaoyuan [1 ]
机构
[1] Auburn Univ, Mat Res & Educ Ctr, Dept Mech Engn, Auburn, AL 36849 USA
[2] Univ Michigan, Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[3] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL USA
关键词
Austenitic stainless steel; Laser-powder bed fusion additive manufacturing; Nano-oxides; Heat treatment; Diffusion; Coarsening; Grain boundary migration; Impact toughness; Fracture; GAMMA-TIAL ALLOY; GRAIN-BOUNDARIES; CREEP-PROPERTIES; FERRITIC STEEL; ALPHA-IRON; PARTICLES; DIFFUSION; TEMPERATURE; PRECIPITATION; STABILITY;
D O I
10.1016/j.msea.2022.142690
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermal evolution of nanoscale oxide inclusions in 316L stainless steel (SS) manufactured by laser powder bed fusion additive manufacturing (AM) was explored. The size, chemical composition, morphology, and distribution of the oxides were characterized as the function of heat treatment conditions. The study revealed the mechanistic driving force of the rapid oxide coarsening during recrystallization. Ostwald ripening governs oxide coarsening. The active grain boundary-oxide interaction at the early stage of recrystallization accelerated oxide coarsening via enhanced solute diffusion along grain boundaries. Pipe diffusion along dislocation cellular boundaries has a negligible contribution to oxide coarsening. At high temperatures (T > 1065 degrees C), although lattice diffusion primarily controlled the oxide growth, the contribution from the grain-boundary diffusion was necessary. The transformation from MnSiO3 to CrMn2O4 took place in the un-recrystallized grains but was not observed when recrystallization started. The interaction of grain boundary and oxides during recrystallization resulted in a high fraction of oxides accumulated at grain boundaries. While oxide coarsening does not significantly alter the toughness value, grain-boundary oxides promote microvoid formation and intergranular fracture under Charpy impact in the recrystallized AM 316L SS.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Transformation of nanoscale inclusions in 316L stainless steel processed by laser beam powder bed fusion during isothermal heating
    Liu, Cheng-song
    Liu, Wei
    Zhang, Hua
    Ni, Hong-wei
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2023, 30 (04) : 795 - 807
  • [2] Transformation of nanoscale inclusions in 316L stainless steel processed by laser beam powder bed fusion during isothermal heating
    Cheng-song Liu
    Wei Liu
    Hua Zhang
    Hong-wei Ni
    Journal of Iron and Steel Research International, 2023, 30 : 795 - 807
  • [3] FRACTURE TOUGHNESS TESTING OF 316L STEEL MANUFACTURED BY LASER POWDER BED FUSION
    Tan, Ee E.
    Sorce, Fabian S.
    Davies, Catrin M.
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 4A, 2022,
  • [4] UNIAXIAL CREEP PROPERTIES OF 316L STAINLESS STEEL MANUFACTURED BY LASER POWDER BED FUSION
    Sandmann, Paul
    Milne, Amy J.
    Davies, Catrin M.
    PROCEEDINGS OF ASME 2023 PRESSURE VESSELS & PIPING CONFERENCE, PVP2023, VOL 5, 2023,
  • [5] Deuterium permeation and retention in 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Hu, Xunxiang
    Lach, Timothy G.
    Terrani, Kurt A.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 548
  • [6] Influence of surface roughness on laser ultrasonic detection for laser powder bed fusion manufactured 316L stainless steel
    Yin, Qianxing
    Hu, Ping
    Xu, Zhao
    Li, Hui
    Li, Hui
    Shen, Shengnan
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 605 - 614
  • [7] Influence of surface roughness on laser ultrasonic detection for laser powder bed fusion manufactured 316L stainless steel
    Yin, Qianxing
    Hu, Ping
    Xu, Zhao
    Li, Hui
    Shen, Shengnan
    Journal of Materials Research and Technology, 2024, 28 : 605 - 614
  • [8] Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Andreatta, Francesco
    Lanzutti, Alex
    Revilla, Reynier, I
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    de Graeve, Iris
    Fedrizzi, Lorenzo
    MATERIALS, 2022, 15 (19)
  • [9] Influence of processing parameters on the density of 316L stainless steel parts manufactured through laser powder bed fusion
    Pragana, Joao P. M.
    Pombinha, Pedro
    Duarte, Valdemar R.
    Rodrigues, Tiago A.
    Oliveira, Joao P.
    Braganca, Ivo M. F.
    Santos, Telmo G.
    Miranda, Rosa M.
    Coutinho, Luisa
    Silva, Carlos M. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2020, 234 (09) : 1246 - 1257
  • [10] Tailoring the microstructural and mechanical properties of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Cheng-song
    Wang, Yong
    Zhang, Hua
    Li, Lie
    Lu, Yuan-yuan
    Xiong, Li
    Ni, Hong-wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 7389 - 7405