Minkowski sums of monotone and general simple polygons

被引:20
|
作者
Oks, E [1 ]
Sharir, M
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1007/s00454-005-1206-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let P be a simple polygon with m edges, which is the disjoint union of k simple polygons, all monotone in a common direction u, and let Q be another simple polygon with n edges, which is the disjoint union of l simple polygons, all monotone in a common direction v. We show that the combinatorial complexity of the Minkowski sum P circle plus Q is O(klmn alpha(min{m,n})), where alpha(center dot) is the inverse Ackermann function. Some structural properties of the case k = l = 1 have been (implicitly) studied in [17]. We rederive these properties using a different proof, apply them to obtain the above complexity bound for k = l = 1, obtain several additional properties of the sum for this special case, and then use them to derive the general bound.
引用
收藏
页码:223 / 240
页数:18
相关论文
共 50 条
  • [41] Note on covering monotone orthogonal polygons with star-shaped polygons
    Lingas, Andrzej
    Wasylewicz, Agnieszka
    Zylinski, Pawel
    INFORMATION PROCESSING LETTERS, 2007, 104 (06) : 220 - 227
  • [42] TORIC SURFACE CODES AND MINKOWSKI LENGTH OF POLYGONS
    Soprunov, Ivan
    Soprunova, Jenya
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 384 - 400
  • [43] Involutes of polygons of constant width in Minkowski planes
    Craizer, Marcos
    Martini, Horst
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (01) : 107 - 125
  • [44] Hyperpolygons generated by the invertible Minkowski sum of polygons
    Sugihara, K
    PATTERN RECOGNITION LETTERS, 2004, 25 (05) : 551 - 560
  • [45] Generalized sums of monotone operators
    Revalski, JP
    Théra, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 979 - 984
  • [46] Enlargements and sums of monotone operators
    Revalski, JP
    Théra, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (04) : 505 - 519
  • [47] COVERING FUNCTIONALS OF MINKOWSKI SUMS AND DIRECT SUMS OF CONVEX BODIES
    Wu, Senlin
    Fan, Baofang
    He, Chan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 1145 - 1154
  • [48] Dynamic Minkowski sums under scaling
    Behar, Evan
    Lien, Jyh-Ming
    COMPUTER-AIDED DESIGN, 2013, 45 (02) : 331 - 341
  • [49] Minkowski sums of projections of convex bodies
    Goodey, P
    MATHEMATIKA, 1998, 45 (90) : 253 - 268
  • [50] On Minkowski Sums of Many Small Sets
    Roginskaya, M. M.
    Shulman, V. S.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (03) : 232 - 235