TORIC SURFACE CODES AND MINKOWSKI LENGTH OF POLYGONS

被引:24
|
作者
Soprunov, Ivan [1 ]
Soprunova, Jenya [2 ]
机构
[1] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
evaluation codes; toric codes; Minkowski sum;
D O I
10.1137/080716554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove new lower bounds for the minimum distance of a toric surface code CP defined by a convex lattice polygon P subset of R(2). The bounds involve a geometric invariant L(P), called the full Minkowski length of P. We also show how to compute L(P) in polynomial time in the number of lattice points in P.
引用
收藏
页码:384 / 400
页数:17
相关论文
共 50 条
  • [1] Toric surface codes and Minkowski sums
    Little, John
    Schenck, Hal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (04) : 999 - 1014
  • [2] Small polygons and toric codes
    Brown, Gavin
    Kasprzyk, Alexander M.
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 51 : 55 - 62
  • [3] On classification of toric surface codes of low dimension
    Luo, Xue
    Yau, Stephen S-T
    Zhang, Mingyi
    Zuo, Huaiqing
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 90 - 102
  • [4] Classifying toric surface codes of dimension 7
    Cairncross, Emily
    Ford, Stephanie
    Garcia, Eli
    Jabbusch, Kelly
    INVOLVE, A JOURNAL OF MATHEMATICS, 2021, 14 (04): : 605 - 616
  • [5] On classification of toric surface codes of dimension seven
    Hussain, Naveed
    Luo, Xue
    Yau, Stephen S-T
    Zhang, Mingyi
    Zuo, Huaiqing
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2020, 28 (02) : 263 - 319
  • [6] Notes on classification of toric surface codes of dimension 5
    Yau, Stephen S. -T.
    Zuo, Huaiqing
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (02) : 175 - 185
  • [7] Notes on classification of toric surface codes of dimension 5
    Stephen S.-T. Yau
    Huaiqing Zuo
    Applicable Algebra in Engineering, Communication and Computing, 2009, 20 : 175 - 185
  • [8] Computing the Minkowski sum of monotone polygons
    HernandezBarrera, A
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1997, E80D (02) : 218 - 222
  • [9] Minkowski decomposition of convex lattice polygons
    Emiris, Ioannis Z.
    Tsigaridas, Elias P.
    ALGEBRAIC GEOMETRY AND GEOMETRIC MODELING, 2006, : 217 - +
  • [10] Exact Minkowski sums of polygons with holes
    Baram, Alon
    Fogel, Efi
    Halperin, Dan
    Hemmer, Michael
    Morr, Sebastian
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 73 : 46 - 56