It is shown that for any morphism, phi : g -> h, of Lie algebras the vector space underlying the Lie algebra h is canonically a g-homogeneous formal manifold with the action of g being highly nonlinear and twisted by Bernoulli numbers. This fact is obtained from a study of the 2-coloured operad of formal homogeneous spaces whose minimal resolution gives a new conceptual explanation of both Ziv Ran's Jacobi-Bernoulli complex and Fiorenza-Manetti's L-infinity-algebra structure on the mapping cone of a morphism of two Lie algebras. All these constructions are iteratively extended to the case of a morphism of arbitrary L-infinity-algebras.
机构:
Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, JapanHirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
Komatsu, Takao
Luca, Florian
论文数: 0引用数: 0
h-index: 0
机构:
UNAM Juriquilla, Math Inst, Santiago De Queretaro 76230, Mexico
Univ Witwatersrand, Sch Math, ZA-2050 Johannesburg, South AfricaHirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
Luca, Florian
Pita Ruiz, Claudio De J., V
论文数: 0引用数: 0
h-index: 0
机构:
Univ Panamer, Mexico City, DF, MexicoHirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
机构:
Private Math Acad, 1-406,23,Maebong 5 Gil, Chonju 54921, Chonbuk, South KoreaPrivate Math Acad, 1-406,23,Maebong 5 Gil, Chonju 54921, Chonbuk, South Korea
机构:
Cardinal Stefan Wyszynski Univ Warsaw, Fac Math & Nat Sci, PL-01815 Warsaw, PolandCardinal Stefan Wyszynski Univ Warsaw, Fac Math & Nat Sci, PL-01815 Warsaw, Poland