Operad of formal homogeneous spaces and Bernoulli numbers

被引:4
|
作者
Merkulov, Sergei A. [1 ]
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
关键词
operad; Lie algebra; Bernoulli number;
D O I
10.2140/ant.2008.2.407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any morphism, phi : g -> h, of Lie algebras the vector space underlying the Lie algebra h is canonically a g-homogeneous formal manifold with the action of g being highly nonlinear and twisted by Bernoulli numbers. This fact is obtained from a study of the 2-coloured operad of formal homogeneous spaces whose minimal resolution gives a new conceptual explanation of both Ziv Ran's Jacobi-Bernoulli complex and Fiorenza-Manetti's L-infinity-algebra structure on the mapping cone of a morphism of two Lie algebras. All these constructions are iteratively extended to the case of a morphism of arbitrary L-infinity-algebras.
引用
收藏
页码:407 / 433
页数:27
相关论文
共 50 条
  • [21] ON THE THEORY OF BERNOULLI NUMBERS
    VANDIVER, HS
    SCIENCE, 1952, 116 (3020) : 530 - 530
  • [22] Integrals with Bernoulli Numbers
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (05): : 456 - 460
  • [23] Bernoulli numbers and solitons
    Grosset, MP
    Veselov, AP
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (04) : 469 - 474
  • [24] A summation on Bernoulli numbers
    Chen, KW
    JOURNAL OF NUMBER THEORY, 2005, 111 (02) : 372 - 391
  • [25] The denominators of the Bernoulli numbers
    Pomerance, Carl
    Wagstaff, Samuel S., Jr.
    ACTA ARITHMETICA, 2023, 209 (01) : 1 - 16
  • [26] A note on Bernoulli numbers
    Muthumalai, Ramesh Kumar
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2013, 19 (01) : 59 - 65
  • [27] BERNOULLI NUMBERS CONJECTURE
    YAMAGUCHI, I
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 288 : 168 - 175
  • [28] FORMULA FOR BERNOULLI NUMBERS
    COLIN, JE
    CABLES & TRANSMISSION, 1979, 33 (01): : 30 - 33
  • [29] SIGN OF BERNOULLI NUMBERS
    MORDELL, LJ
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (05): : 547 - 548
  • [30] Bernoulli Numbers and Solitons
    Marie-Pierre Grosset
    Alexander P Veselov
    Journal of Nonlinear Mathematical Physics, 2005, 12 : 469 - 474