Operad of formal homogeneous spaces and Bernoulli numbers

被引:4
|
作者
Merkulov, Sergei A. [1 ]
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
关键词
operad; Lie algebra; Bernoulli number;
D O I
10.2140/ant.2008.2.407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any morphism, phi : g -> h, of Lie algebras the vector space underlying the Lie algebra h is canonically a g-homogeneous formal manifold with the action of g being highly nonlinear and twisted by Bernoulli numbers. This fact is obtained from a study of the 2-coloured operad of formal homogeneous spaces whose minimal resolution gives a new conceptual explanation of both Ziv Ran's Jacobi-Bernoulli complex and Fiorenza-Manetti's L-infinity-algebra structure on the mapping cone of a morphism of two Lie algebras. All these constructions are iteratively extended to the case of a morphism of arbitrary L-infinity-algebras.
引用
收藏
页码:407 / 433
页数:27
相关论文
共 50 条