When machine learning meets multiscale modeling in chemical reactions

被引:9
|
作者
Yang, Wuyue [2 ]
Peng, Liangrong [3 ]
Zhu, Yi [2 ]
Hong, Liu [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Minjiang Univ, Coll Math & Data Sci, Fuzhou 350108, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 09期
基金
美国国家科学基金会;
关键词
Bioinformatics - Learning algorithms - Machine learning;
D O I
10.1063/5.0015779
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the intrinsic complexity and nonlinearity of chemical reactions, direct applications of traditional machine learning algorithms may face many difficulties. In this study, through two concrete examples with biological background, we illustrate how the key ideas of multiscale modeling can help to greatly reduce the computational cost of machine learning, as well as how machine learning algorithms perform model reduction automatically in a time-scale separated system. Our study highlights the necessity and effectiveness of an integration of machine learning algorithms and multiscale modeling during the study of chemical reactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multiscale Modeling Meets Machine Learning: What Can We Learn?
    Peng, Grace C. Y.
    Alber, Mark
    Tepole, Adrian Buganza
    Cannon, William
    De, Suvranu
    Dura-Bernal, Salvador
    Garikipati, Krishna
    Karniadakis, George
    Lytton, William W.
    Perdikaris, Paris
    Petzold, Linda
    Kuhl, Ellen
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (03) : 1017 - 1037
  • [2] Multiscale Modeling Meets Machine Learning: What Can We Learn?
    Grace C. Y. Peng
    Mark Alber
    Adrian Buganza Tepole
    William R. Cannon
    Suvranu De
    Savador Dura-Bernal
    Krishna Garikipati
    George Karniadakis
    William W. Lytton
    Paris Perdikaris
    Linda Petzold
    Ellen Kuhl
    Archives of Computational Methods in Engineering, 2021, 28 : 1017 - 1037
  • [3] When Device Modeling Meets Machine Learning: Opportunities and Challenges (Invited)
    Zhang, Lining
    Peng, Baokang
    Li, Yu
    Liu, Hengyi
    Dai, Wu
    Wang, Runsheng
    PROCEEDINGS OF THE 2024 ACM/IEEE INTERNATIONAL SYMPOSIUM ON MACHINE LEARNING FOR CAD, MLCAD 2024, 2024,
  • [4] When Device Modeling Meets Machine Learning: Opportunities and Challenges (Invited)
    Zhang, Lining
    Peng, Baokang
    Li, Yu
    Liu, Hengyi
    Dai, Wu
    Wang, Runsheng
    2024 ACM/IEEE 6TH SYMPOSIUM ON MACHINE LEARNING FOR CAD, MLCAD 2024, 2024,
  • [5] Modeling Reactions from Chemical Theories to Machine Learning
    Naidoo, Kevin J.
    Merz, Kenneth M.
    Wei, Guo-Wei
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (23) : 7273 - 7273
  • [6] Machine learning meets chemical physics
    Ceriotti, Michele
    Clementi, Cecilia
    Anatole von Lilienfeld, O.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (16):
  • [7] When machine learning meets molecular synthesis
    Oliveira, Joao C. A.
    Frey, Johanna
    Zhang, Shuo-Qing
    Xu, Li-Cheng
    Li, Xin
    Li, Shu-Wen
    Hong, Xin
    Ackermann, Lutz
    TRENDS IN CHEMISTRY, 2022, 4 (10): : 863 - 885
  • [8] When Causal Inference Meets Graph Machine Learning
    Ma, Jing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 20, 2024, : 22676 - 22676
  • [9] When Machine Learning Meets Privacy: A Survey and Outlook
    Liu, Bo
    Ding, Ming
    Shaham, Sina
    Rahayu, Wenny
    Farokhi, Farhad
    Lin, Zihuai
    ACM COMPUTING SURVEYS, 2021, 54 (02)
  • [10] When Machine Learning meets Security Issues: A survey
    Guan, Zhenyu
    Bian, Liangxu
    Shang, Tao
    Liu, Jianwei
    2018 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2018, : 158 - 165