Weakly supervised topic sentiment joint model with word embeddings

被引:31
|
作者
Fu, Xianghua [1 ]
Sun, Xudong [1 ]
Wu, Haiying [1 ]
Cui, Laizhong [1 ]
Huang, Joshua Zhexue [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
关键词
Sentiment analysis; Topic model; Topic sentiment joint model; Word embeddings;
D O I
10.1016/j.knosys.2018.02.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Topic sentiment joint model aims to deal with the problem about the mixture of topics and sentiment simultaneously from online reviews. Most of existing topic sentiment modeling algorithms are mainly based on the state-of-art latent Dirichlet allocation (LDA) and probabilistic latent semantic analysis (PLSA), which infer sentiment and topic distributions from the co-occurrence of words. These methods have been proposed and successfully used for topic and sentiment analysis. However, when the training corpus is small or when the documents are short, the textual features become sparse, so that the results of the sentiment and topic distributions might be not very satisfied. In this paper, we propose a novel topic sentiment joint model called weakly supervised topic sentiment joint model with word embeddings (WS-TSWE), which incorporates word embeddings and HowNet lexicon simultaneously to improve the topic identification and sentiment recognition. The main contributions of WS-TSWE include the following two aspects. (1) Existing models generate the words only from the sentiment-topic-to-word Dirichlet multinomial component, but the WS-TSWE model replaces it with a mixture of two components, a Dirichlet multinomial component and a word embeddings component. Since the word embeddings are trained on a very large corpora and can be used to extend the semantic information of the words, they can provide a certain solution for the problem of the textual sparse. (2) Most of previous models incorporate sentiment knowledge in the beta priors. And the priors are usually set from a dictionary and completely rely on previous domain knowledge to identify positive and negative words. In contrast, the WS-TSWE model calculates the sentiment orientation of each word with the HowNet lexicon and automatically infers sentiment-based beta priors for sentiment analysis and opinion mining. Furthermore, we implement WS-TSWE with Gibbs sampling algorithms. The experimental results on Chinese and English data sets show that WS-TSWE achieved significant performance in the task of detecting sentiment and topics simultaneously. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 50 条
  • [41] Quality of Word Embeddings on Sentiment Analysis Tasks
    Cano, Erion
    Morisio, Maurizio
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2017, 2017, 10260 : 332 - 338
  • [42] Learning weakly supervised multimodal phoneme embeddings
    Chaabouni, Rahma
    Dunbar, Ewan
    Zeghidour, Neil
    Dupoux, Emmanuel
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 2218 - 2222
  • [43] A Joint Model for Topic-Sentiment Modeling from Text
    Dermouche, Mohamed
    Kouas, Leila
    Velcin, Julien
    Loudcher, Sabine
    30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 819 - 824
  • [44] STC: A Joint Sentiment-Topic Model for Community Identification
    Yang, Baoguo
    Manandhar, Suresh
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2014, 8643 : 535 - 548
  • [45] A Joint Model for Topic-Sentiment Evolution over Time
    Dermouche, Mohamed
    Velcin, Julien
    Khouas, Leila
    Loudcher, Sabine
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 773 - 778
  • [46] Learning emotional word embeddings for sentiment analysis
    Zeng, Qingtian
    Zhao, Xishi
    Hu, Xiaohui
    Duan, Hua
    Zhao, Zhongying
    Li, Chao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9515 - 9527
  • [47] Sentiment analysis leveraging emotions and word embeddings
    Giatsoglou, Maria
    Vozalis, Manolis G.
    Diamantaras, Konstantinos
    Vakali, Athena
    Sarigiannidis, George
    Chatzisavvas, Konstantinos Ch.
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 69 : 214 - 224
  • [48] Nonparametric Spherical Topic Modeling with Word Embeddings
    Batmanghelich, Nematollah Kayhan
    Saeedi, Ardavan
    Narasimhan, Karthik R.
    Gershman, Samuel J.
    PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, 2016, : 537 - 542
  • [49] Gaussian LDA for Topic Models with Word Embeddings
    Das, Rajarshi
    Zaheer, Manzil
    Dyer, Chris
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, 2015, : 795 - 804
  • [50] Sentiment Analysis using Topic-Document Embeddings
    Mitroi, Madalina
    Truica, Ciprian-Octavian
    Apostol, Elena-Simona
    Florea, Adina Magda
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2020), 2020, : 75 - 82