Fragment molecular orbital method: use of approximate electrostatic potential

被引:363
|
作者
Nakano, T
Kaminuma, T
Sato, T
Fukuzawa, K
Akiyama, Y
Uebayasi, M
Kitaura, K
机构
[1] Natl Inst Hlth Sci, Div ChemBio Informat, Setagaya Ku, Tokyo 1588501, Japan
[2] Fuji Res Inst Corp, Ctr Computat Sci & Engn, Chiyoda Ku, Tokyo 1018443, Japan
[3] Natl Inst Adv Ind Sci & Technol, Computat Biol Res Ctr, Koto Ku, Tokyo 1350064, Japan
[4] Natl Inst Adv Ind Sci & Technol, Inst Mol & Cell Biol, Tsukuba, Ibaraki 3058566, Japan
[5] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
10.1016/S0009-2614(01)01416-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, we have proposed the fragment molecular orbital (FMO) method. an approximate MO method for calculating large molecules such as proteins. The method has been shown to reproduce ab initio total energies and geometries of molecules in good accuracy. The most time consuming part in the method, the calculations of environmental electrostatic potentials, were speeded up by employing the Mulliken approximation for two-electron integrals and a fractional point charge approximation. Numerical calculations on several polypeptides revealed that the approximations brought no significant loss of accuracy in the total energy of molecules and were of practical use. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条
  • [31] Fragment molecular orbital method: analytical energy gradients
    Kitaura, K
    Sugiki, SI
    Nakano, T
    Komeiji, Y
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) : 163 - 170
  • [32] Fragment Molecular Orbital method: Not just for proteins anymore
    Pruitt, Spencer R.
    Gordon, Mark S.
    Fedorov, Dmitri G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [33] APPROXIMATE EXPRESSION OF THE ELECTROSTATIC MOLECULAR-POTENTIAL FOR BENZENIC COMPOUNDS
    AGRESTI, A
    BONACCORSI, R
    TOMASI, J
    THEORETICA CHIMICA ACTA, 1979, 53 (03): : 215 - 220
  • [34] Nuclear-Electronic Orbital Method within the Fragment Molecular Orbital Approach
    Auer, Benjamin
    Pak, Michael V.
    Hammes-Schiffer, Sharon
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (12): : 5582 - 5588
  • [35] Reducing the scaling of the fragment molecular orbital method using the multipole method
    Choi, Cheol Ho
    Fedorov, Dmitri G.
    CHEMICAL PHYSICS LETTERS, 2012, 543 : 159 - 165
  • [36] Derivatives of the approximated electrostatic potentials in unrestricted Hartree–Fock based on the fragment molecular orbital method and an application to polymer radicals
    Hiroya Nakata
    Dmitri G. Fedorov
    Satoshi Yokojima
    Kazuo Kitaura
    Shinichiro Nakamura
    Theoretical Chemistry Accounts, 2014, 133
  • [37] A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (02):
  • [38] THE ELECTROSTATIC CALCULATION OF MOLECULAR ENERGIES .2. APPROXIMATE WAVE FUNCTIONS AND THE ELECTROSTATIC METHOD
    HURLEY, AC
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 226 (1165): : 179 - 192
  • [39] Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) : 5404 - 5416
  • [40] Fully analytic energy gradient for the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt R.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241