Fragment molecular orbital method: use of approximate electrostatic potential

被引:363
|
作者
Nakano, T
Kaminuma, T
Sato, T
Fukuzawa, K
Akiyama, Y
Uebayasi, M
Kitaura, K
机构
[1] Natl Inst Hlth Sci, Div ChemBio Informat, Setagaya Ku, Tokyo 1588501, Japan
[2] Fuji Res Inst Corp, Ctr Computat Sci & Engn, Chiyoda Ku, Tokyo 1018443, Japan
[3] Natl Inst Adv Ind Sci & Technol, Computat Biol Res Ctr, Koto Ku, Tokyo 1350064, Japan
[4] Natl Inst Adv Ind Sci & Technol, Inst Mol & Cell Biol, Tsukuba, Ibaraki 3058566, Japan
[5] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
关键词
D O I
10.1016/S0009-2614(01)01416-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, we have proposed the fragment molecular orbital (FMO) method. an approximate MO method for calculating large molecules such as proteins. The method has been shown to reproduce ab initio total energies and geometries of molecules in good accuracy. The most time consuming part in the method, the calculations of environmental electrostatic potentials, were speeded up by employing the Mulliken approximation for two-electron integrals and a fractional point charge approximation. Numerical calculations on several polypeptides revealed that the approximations brought no significant loss of accuracy in the total energy of molecules and were of practical use. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条
  • [1] The role of the exchange in the embedding electrostatic potential for the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (17):
  • [2] Effective Fragment Molecular Orbital Method: A Merger of the Effective Fragment Potential and Fragment Molecular Orbital Methods
    Steinmann, Casper
    Fedorov, Dmitri G.
    Jensen, Jan H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (33): : 8705 - 8712
  • [3] Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed with the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Brekhov, Anton
    Mironov, Vladimir
    Alexeev, Yuri
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (29): : 6281 - 6290
  • [4] Fragment molecular orbital method: an approximate computational method for large molecules
    Kitaura, K
    Ikeo, E
    Asada, T
    Nakano, T
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 1999, 313 (3-4) : 701 - 706
  • [5] Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2009, 475 (1-3) : 124 - 131
  • [6] Analytic Second Derivatives for the Efficient Electrostatic Embedding in the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (25) : 2039 - 2050
  • [7] Acceleration of Environmental Electrostatic Potential Using Cholesky Decomposition with Adaptive Metric (CDAM) for Fragment Molecular Orbital (FMO) Method
    Okiyama, Yoshio
    Nakano, Tatsuya
    Watanabe, Chiduru
    Fukuzawa, Kaori
    Komeiji, Yuto
    Segawa, Katsunori
    Mochizuki, Yuji
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2021, 94 (01) : 91 - 96
  • [8] Systematic Study of the Embedding Potential Description in the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Slipchenko, Lyudmila V.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (33): : 8742 - 8753
  • [9] Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2012, 544 : 87 - 93
  • [10] APPROXIMATE MOLECULAR-ORBITAL METHOD
    ZERNER, M
    JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (07): : 2788 - 2799