GEOMETRIC CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES

被引:21
|
作者
Alderson, T. L. [1 ]
Mellinger, K. E. [2 ]
机构
[1] Univ New Brunswick, Dept Math Sci, St John, NB E2L 4L5, Canada
[2] Univ Mary Washington, Dept Math, Fredericksburg, VA 22401 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Optical orthogonal code; CDMA; singer; root subline; conic;
D O I
10.3934/amc.2008.2.451
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide a variety of constructions of (n, w, lambda)-optical orthogonal codes using special sets of points and Singer groups in finite projective spaces. In several of the constructions, we are able to prove that the resulting codes are optimal with respect to the Johnson bound. The optimal codes exhibited have lambda = 1, 2 and w - 1 (where w is the weight of each codeword in the code). The remaining constructions are are shown to be asymptotically optimal with respect to the Johnson bound, and in some cases maximal. These codes represent an improvement upon previously known codes by shortening the length. In some cases the constructions give rise to variable weight OOCs.
引用
收藏
页码:451 / 467
页数:17
相关论文
共 50 条
  • [41] Combinatorial constructions of optimal (m, n, 4, 2) optical orthogonal signature pattern codes
    Chen, Jingyuan
    Ji, Lijun
    Li, Yun
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (07) : 1499 - 1525
  • [42] Combinatorial constructions for maximum optical orthogonal signature pattern codes
    Pan, Rong
    Chang, Yanxun
    DISCRETE MATHEMATICS, 2013, 313 (24) : 2918 - 2931
  • [43] Constructions of Optimal Optical Orthogonal Codes with Weights Set {5,7} via Cyclic Packing
    Huang, Bichang
    Luo, Dan
    Zhu, Wenxing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [44] Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property
    Dai, Peipei
    Wang, Jianmin
    Yin, Jianxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (02) : 315 - 330
  • [45] Constructions of optimal two-dimensional optical orthogonal codes with AM-OPPW restriction for λ=2
    Liu, Yan
    Wang, Lidong
    Lei, Jianguo
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [46] Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property
    Peipei Dai
    Jianmin Wang
    Jianxing Yin
    Designs, Codes and Cryptography, 2014, 71 : 315 - 330
  • [47] Optimal optical orthogonal codes with λ>1
    Omrani, R
    Moreno, O
    Kumar, PV
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 366 - 366
  • [48] Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems
    Djordjevic, IB
    Vasic, B
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003, 21 (09) : 1869 - 1875
  • [49] Geometric constructions of Gallager codes
    Lin, S
    Xu, J
    Tang, H
    Kou, Y
    COMMUNICATIONS, INFORMATION AND NETWORK SECURITY, 2003, 712 : 147 - 162
  • [50] Geometric constructions of quantum codes
    Bierbrauer, Juergen
    Bartoli, D.
    Marcugini, S.
    Pambianco, F.
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 149 - +