GEOMETRIC CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES

被引:21
|
作者
Alderson, T. L. [1 ]
Mellinger, K. E. [2 ]
机构
[1] Univ New Brunswick, Dept Math Sci, St John, NB E2L 4L5, Canada
[2] Univ Mary Washington, Dept Math, Fredericksburg, VA 22401 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Optical orthogonal code; CDMA; singer; root subline; conic;
D O I
10.3934/amc.2008.2.451
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide a variety of constructions of (n, w, lambda)-optical orthogonal codes using special sets of points and Singer groups in finite projective spaces. In several of the constructions, we are able to prove that the resulting codes are optimal with respect to the Johnson bound. The optimal codes exhibited have lambda = 1, 2 and w - 1 (where w is the weight of each codeword in the code). The remaining constructions are are shown to be asymptotically optimal with respect to the Johnson bound, and in some cases maximal. These codes represent an improvement upon previously known codes by shortening the length. In some cases the constructions give rise to variable weight OOCs.
引用
收藏
页码:451 / 467
页数:17
相关论文
共 50 条
  • [31] Geometric Orthogonal Codes of Size Larger Than Optical Orthogonal Codes
    Chee, Yeow Meng
    Kiah, Han Mao
    Ling, San
    Wei, Hengjia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2883 - 2895
  • [32] Combinatorial constructions for optimal multiple-weight optical orthogonal signature pattern codes
    Zhao, Hengming
    Qin, Rongcun
    DISCRETE MATHEMATICS, 2016, 339 (01) : 179 - 193
  • [33] Improved Johnson bounds for optical orthogonal codes with λ > 1 and some optimal constructions
    Omrani, R
    Moreno, O
    Kumar, PV
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 259 - 263
  • [34] Constructions of optical orthogonal codes from finite geometry
    Alderson, T. L.
    Mellinger, Keith E.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (03) : 785 - 793
  • [35] Combinatorial constructions of optical orthogonal codes for OCDMA systems
    Djordjevic, IB
    Vasic, B
    IEEE COMMUNICATIONS LETTERS, 2004, 8 (06) : 391 - 393
  • [36] Construction for optimal optical orthogonal codes
    An, XQ
    Qiu, K
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 96 - 100
  • [37] Combinatorial constructions of optimal (m, n, 4, 2) optical orthogonal signature pattern codes
    Jingyuan Chen
    Lijun Ji
    Yun Li
    Designs, Codes and Cryptography, 2018, 86 : 1499 - 1525
  • [38] Constructions of Optimal 2-D Optical Orthogonal Codes via Generalized Cyclotomic Classes
    Cai, Han
    Liang, Hongbin
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 688 - 695
  • [39] New Constructions of Optimal Optical Orthogonal Codes Based on Partitionable Sets and Almost Partitionable Sets
    Wang, Zijing
    Kong, Hairong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2355 - 2363
  • [40] 3-Dimensional Optical Orthogonal Codes With Ideal Autocorrelation-Bounds and Optimal Constructions
    Alderson, Tim L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4392 - 4398