Lung Nodule Classification on CT Images Using Deep Convolutional Neural Network Based on Geometric Feature Extraction

被引:4
|
作者
Venkatesan, Nikitha Johnsirani [1 ]
Nam, ChoonSung [2 ]
Shin, Dong Ryeol [1 ]
机构
[1] Sungkyunkwan Univ, Elect & Comp Engn, Suwon 440746, South Korea
[2] Inha Univ, Dept Software Convergence & Engn, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
Nodule Classification; CT; Deep Learning; Geometric; ROI; AHI; Non-Gaussian Convolutional Neural Networks; ALGORITHM;
D O I
10.1166/jmihi.2020.3122
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung cancer detection in the earlier stage is essential to improve the survival rate of the cancer patient. Computed Tomography [CT] is a first and preferred modality of imaging for detecting cancer with an enhanced rate of diagnosis accuracy owing to its function as a single scan process. Visual inspections of the CT images are prone to error, as it is more complex to distinguish lung nodules from the background tissues which are subjective to intra and interobserver variability. Hence, computer-aided diagnosis is essential to support radiologists for accurate lung nodule prediction. To overcome this issue, we propose a deep learning approach for automatic lung cancer detection from a low dose CT images. We also propose image pre-processing using Efficient Adaptive Histogram Equalization based Region of Interest [EAHE-ROl] to enhance the CT scan and to eliminate artefacts which occur due to noise and variations of the image. The ROI is extracted from CT scans using morphological operators, thus reducing the number of false positives. We chose geometric features as they extract more geometric elements like curves, lines and points of cancer nodules. Our Non-Gaussian Convolutional Neural Networks [NG-CNN] architecture contains feature extractor and classifier, which has been applied on training, validation and test dataset. Our proposed methodology offers better-classified outcome and effectual cancer detection by outperforming the other competing methods and gives a test accuracy of 94.97% and AUC 0.896.
引用
收藏
页码:2042 / 2052
页数:11
相关论文
共 50 条
  • [31] Lung nodule detection using Eyrie Flock-based Deep Convolutional Neural Network
    Gedam, Ajit Narendra
    Ajalkar, Deepika A.
    Rumale, Aniruddha S.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2024, 18 (03): : 1651 - 1673
  • [32] Efficient Lung Nodule Classification Using Transferable Texture Convolutional Neural Network
    Ali, Imdad
    Muzammil, Muhammad
    Ul Haq, Ihsan
    Khaliq, Amir A.
    Abdullah, Suheel
    IEEE ACCESS, 2020, 8 : 175859 - 175870
  • [33] Text Feature Extraction and Classification Based on Convolutional Neural Network (CNN)
    Zhang, Taohong
    Li, Cunfang
    Cao, Nuan
    Ma, Rui
    Zhang, ShaoHua
    Ma, Nan
    DATA SCIENCE, PT 1, 2017, 727 : 472 - 485
  • [34] Audio Feature Extraction and Classification Technology Based on Convolutional Neural Network
    Liu, Zhenfang
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (09) : 1425 - 1431
  • [35] Classification of lung nodules in CT images using conditional generative adversarial - convolutional neural network
    Ishama, Nur Nabila Mohd
    Mokria, Siti Salasiah
    Abd Rahni, Ashrani Aizuddin
    Ali, Nurul Fatihah
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 1047 - 1058
  • [36] Feature Extraction and Classification of Photovoltaic Panels Based on Convolutional Neural Network
    Prabhakaran, S.
    Uthra, R. Annie
    Preetharoselyn, J.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1437 - 1455
  • [37] Using Multi-level Convolutional Neural Network for Classification of Lung Nodules on CT images
    Lyu, Juan
    Ling, Sai Ho
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 686 - 689
  • [38] Deep Learning in CT Images: Automated Pulmonary Nodule Detection for Subsequent Management Using Convolutional Neural Network
    Xu, Yi-Ming
    Zhang, Teng
    Xu, Hai
    Qi, Liang
    Zhang, Wei
    Zhang, Yu-Dong
    Gao, Da-Shan
    Yuan, Mei
    Yu, Tong-Fu
    CANCER MANAGEMENT AND RESEARCH, 2020, 12 : 2979 - 2992
  • [39] Lung Nodule Classification Using Taguchi-Based Convolutional Neural Networks for Computer Tomography Images
    Lin, Cheng-Jian
    Li, Yu-Chi
    ELECTRONICS, 2020, 9 (07) : 1 - 9
  • [40] Symmetric All Convolutional Neural-Network-Based Unsupervised Feature Extraction for Hyperspectral Images Classification
    Zhang, Mingyang
    Gong, Maoguo
    He, Haibo
    Zhu, Shengqi
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 2981 - 2993